首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   13篇
  国内免费   27篇
化学   32篇
晶体学   1篇
物理学   11篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2013年   8篇
  2012年   7篇
  2011年   7篇
  2010年   7篇
  2009年   5篇
  2008年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
基于量子限域效应的新型太阳电池——量子点敏化太阳电池(QD-SSCs),由于其最大理论转化效率超过了传统的Shockley-Queisser极限效率,已经成为目前最具研究潜力的太阳电池之一。本文综述了近几年来QD-SSCs领域的研究进展,主要从半导体氧化物纳米材料,特别是其低维纳米结构下的特殊性能;金属硫族化合物纳米晶;电解质;对电极等几个方面评述了电池材料的研究进展。另外,从量子点材料的制备和组装方面简述了目前电池光阳极的研究情况,并介绍了提高量子点光敏化性能的几个新途径。最后,从开路电压和短路电流角度分析了影响电池性能的几个关键因素,并对QD-SSCs今后的发展进行了展望。  相似文献   
2.
陈双宏  翁坚  王利军  张昌能  黄阳  姜年权  戴松元 《物理学报》2011,60(12):128404-128404
太阳电池组件由于局部电压不匹配,其中部分电池可能较长时间工作在负偏压状态下,从而影响电池光电性能.借助拉曼光谱、电化学阻抗谱和入射单色光量子效率(IPCE)等测试手段,研究长期负偏压作用下染料敏化太阳电池光电性能的变化及其影响机理.拉曼光谱研究结果表明:电池在1000 h负偏压作用下,电解质中阳离子(Li+)会向光阳极(TiO2电极)移动并嵌入TiO2薄膜中;长期负偏压作用还会致使TiO2/电解质界面阻抗增大和IPCE下降,导致电池开路电压升高和短路电流减小.通过加入苯并咪唑(BI)添加剂,经1000 h负偏压后电池的拉曼光谱实验表明,BI能在一定程度阻碍Li+的嵌入,电池具有较好的长期稳定性.不同负偏压下的老化实验进一步表明,通过加入添加剂能够使电池在长期负偏压下保持较好的稳定性. 关键词: 染料敏化 太阳电池 组件 负偏压  相似文献   
3.
在电子扩散微分方程的基础上,研究了染料敏化太阳电池光生电流和光生电压随光照强度不同的变化关系.提出敏化太阳电池串联阻抗功率损耗模型,理论模拟了大面积电池(有效面积>1 cm2)光电转换效率随多孔薄膜有效面积宽度变化的曲线、透明导电基底膜与银栅极的比接触电阻以及在不同入射光强下银栅极体电阻对大面积染料敏化太阳电池光伏性能的影响.结果表明透明导电基底膜的方块电阻和银栅极体电阻对大面积染料敏化太阳电池的性能有很大影响,而这种影响随光强的减弱逐渐减小. 关键词: 染料敏化 太阳电池 串联阻抗 光电转换效率  相似文献   
4.
彭瑞祥  陈冲  沈薇  王命泰  郭颖  耿宏伟 《物理学报》2009,58(9):6582-6589
以局域规整聚(3-己基噻吩) (P3HT)制备了TiO2/聚合物型双层结构光伏电池.利用稳态电流-电压测试和动态强度调制光电压谱,结合差热分析、吸收光谱和荧光光谱, 研究了非晶支化聚亚乙基亚胺(BPEI)作为P3HT膜层的添加成分对TiO2/P3HT双层电池性能的影响.由于P3HT链的高结晶性,使得TiO2/P3HT界面接触不好,导致电池性能差.当在P3HT中共混重量比WBPEI/P3HT=1%—5%的BPEI时,电池性能得到显著改善;尤其是当WBPEI/P3HT= 1%时,电池表现出近0.8V的开路电压和20μA/cm2的短路电流.结果表明BPEI对电池性能的影响不是源于P3HT-BPEI共混体系光学性能的变化,而主要是由于其改变了TiO2/P3HT界面接触性能.BPEI对TiO2/P3HT界面接触有两个相互竞争的影响,这取决于P3HT-BPEI共混体系的组成.一方面,通过降低P3HT的结晶度和增强与TiO2表面的相互作用,改善P3HT链在TiO2 表面的附着;另一方面,当BPEI含量过高时,BPEI在TiO2表面的附着量将增加,反而会阻碍P3HT与TiO2表面的接触.良好的TiO2/P3HT界面接触有利于提高激子的界面分离效率、光生电子的寿命和电池效率.本文结果有望为聚合物光伏电池性能的改善提供新的认识和方法. 关键词: 聚(3-己基噻吩) 二氧化钛 共轭聚合物 光伏电池  相似文献   
5.
选取氧化钐作为包覆材料, 采用浸渍法对已烧结好的纳米TiO2多孔薄膜电极进行修饰, 并将其应用于染料敏化太阳电池中, 研究了纳米级氧化钐包覆层厚度及均匀性对染料敏化太阳电池中电子注入效率和电子复合过程的影响和作用机制. 结果表明, 包覆层厚度对电子注入效率和电子复合具有明显影响, 且电子注入效率和电子寿命随包覆层厚度的增加而呈现相反的变化趋势, 包覆层厚度在0.4 nm以内, 电池性能最好.  相似文献   
6.
为了改善染料敏化太阳电池内电子的传输复合过程, 研究者尝试不同方法制备或改性TiO2薄膜. 对TiO2薄膜进行后处理, 在其表面引入一层小颗粒层, 是一种有效的方法并被广泛研究. 通过对TiO2薄膜不同时间的电沉积表面修饰, 细致研究了表面修饰后染料敏化太阳电池微观性能的变化机制. 采用阳极氧化法在TiCl3水溶液中对TiO2薄膜进行电沉积后处理, 将溶液pH值调至2.2, 装置的反应速率由恒电位仪控制. 不同沉积时间电池带边移动以及电子传输复合的动力学过程, 借助强度调制光电流谱(IMPS)/强度调制光电压谱(IMVS)和电化学阻抗谱(EIS)等探测技术表征. 研究表明, 电沉积在TiO2薄膜表面引入了大量浅能级陷阱态, 以致电势较高时电容随沉积时间延长增加明显. 不同时间的电沉积表面修饰在TiO2薄膜表面形成了新的小颗粒层并改善了TiO2颗粒间接触, 在改善电子注入及收集过程的同时, 也有效抑制了内部电子复合. IMPS/IMVS结果表明, 电沉积对动力学过程改善的效果受光强影响明显, 弱光下作用更为突出. 此外, 电池开路电压主要受带边移动及内部复合变化影响, 随沉积时间延长, 表面电荷的增多使TiO2薄膜带边逐渐正移, 有效改善了光电流却限制了开路电压的提升. 在适合的电沉积时间下, 电沉积表面修饰可以同时改善光电流和光电压.  相似文献   
7.
采用电化学阻抗谱(EIS)研究了染料敏化太阳电池(DSC)中由导电玻璃、 纳米多孔TiO2薄膜和电解质构成的多相复杂接触界面的电子转移机制和动力学过程. 通过沉积聚合物薄膜简化多相接触界面结构, 根据接触界面结构和电子转移途径的变化, 分析了不同偏压下多相接触界面电子转移机制, 构建与之对应的等效电路, 获得了DSC内部各个主要接触界面的电子转移动力学常数. 结果表明, 通过外加偏压的控制和多相接触界面结构的简化, 可以区别分析多相复杂接触界面电子转移机制与动力学过程.  相似文献   
8.
采用高压釜合成和乙酸乙酯/水萃取提纯的模式制备出高产率、高纯度的环状烷基硫碘盐. 高压釜合成在保证产率的前提下, 大大缩短了反应时间(反应时间仅为原来的1/3)|乙酸乙酯和水的萃取提纯模式在保证产品纯度的同时, 大大缩短了提纯时间, 还避免了有毒试剂的使用. 制备出的烷基环状硫碘盐作为碘源用于配制染料敏化太阳电池用电解质, 相应电池的光电转化效率接近使用传统烷基咪唑碘盐的电池. 电化学阻抗谱(EIS)测试表明环状烷基锍阳离子相比于烷基咪唑阳离子来说, 更有利于抑制电池内部的电子复合反应, 同时还能促进对电极上电子交换反应的进行, 最终可以提高电池的开路电压和填充因子.  相似文献   
9.
纳米TiO2由于具有合适的禁带宽度、良好的光电化学稳定性、制作工艺简单等特点,目前广泛应用于染料敏化、量子点和钙钛矿等太阳电池中。作为电池的重要组成部分之一,纳米TiO2晶体尺寸、颗粒大小和制备方法等明显影响电池的光伏性能,相关研究工作一直是染料敏化、量子点和钙钛矿等太阳电池方面的重点。本文综述了纳米TiO2作为致密层和骨架层在钙钛矿太阳电池中的应用研究进展,主要讨论了纳米TiO2的不同形貌、制备方法以及结构等对电池光电性能的影响,并针对纳米TiO2在后续对电池性能提升方面进行了展望。  相似文献   
10.
上/下转换技术能将红外光和紫外光能量转换成与工作电池匹配的光谱范围内能量,解决了由于光谱不匹配造成的能量损失,实现拓宽电池的吸收光谱,提高电池的光利用率和转换效率,降低紫外光对电池稳定性的影响。稀土离子由于特殊的能级结构且发光效率高,常作为上/下转换发光材料的中心离子。近年来上转换发光中心主要集中在Er3+,Tm3+等三价离子,敏化中心则为具有特殊能级结构和较长激发态寿命的Yb3+离子。Tb3+,Eu3+,Sm3+等离子由于在紫外光区具有电荷迁移吸收带,易被高能紫外光子激发,量子效率接近100%且发射谱线主要位于可见光区,常被用作下转换发光中心。发光基质多选择声子能量低、透光范围广、易于掺杂的氟化物,并通过水热法制备出结晶度高、粒径小且分布均匀的粉体材料。目前,上/下转换技术应用于DSC的研究越来越受到人们的重视,本文将对上转换和下转换技术在DSC中的应用进行详细阐述,主要介绍上/下转换技术的发展背景,在太阳电池中的应用和方法,详细综述近几年来各类上转换和下转换材料在太阳电池中应用的研究进展,最后对其未来的发展方向进行了展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号