首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3437篇
  免费   462篇
  国内免费   485篇
化学   3402篇
晶体学   90篇
力学   19篇
综合类   18篇
数学   4篇
物理学   851篇
  2024年   4篇
  2023年   40篇
  2022年   74篇
  2021年   113篇
  2020年   172篇
  2019年   123篇
  2018年   104篇
  2017年   88篇
  2016年   162篇
  2015年   124篇
  2014年   188篇
  2013年   345篇
  2012年   194篇
  2011年   194篇
  2010年   153篇
  2009年   209篇
  2008年   230篇
  2007年   210篇
  2006年   248篇
  2005年   191篇
  2004年   197篇
  2003年   186篇
  2002年   126篇
  2001年   70篇
  2000年   81篇
  1999年   69篇
  1998年   70篇
  1997年   61篇
  1996年   67篇
  1995年   59篇
  1994年   44篇
  1993年   34篇
  1992年   38篇
  1991年   22篇
  1990年   13篇
  1989年   12篇
  1988年   15篇
  1987年   15篇
  1986年   6篇
  1985年   8篇
  1984年   1篇
  1983年   4篇
  1982年   4篇
  1980年   3篇
  1979年   2篇
  1977年   3篇
  1976年   2篇
  1974年   1篇
  1973年   4篇
  1972年   1篇
排序方式: 共有4384条查询结果,搜索用时 15 毫秒
1.
Yukai Zhuang 《中国物理 B》2022,31(8):89101-089101
Iron oxides are widely found as ores in Earth's crust and are also important constituents of its interiors. Their polymorphism, composition changes, and electronic structures play essential roles in controlling the structure and geodynamic properties of the solid Earth. While all-natural occurring iron oxides are semiconductors or insulators at ambient pressure, they start to metalize under pressure. Here in this work, we review the electronic conductivity and metallization of iron oxides under high-pressure conditions found in Earth's lower mantle. We summarize that the metallization of iron oxides is generally controlled by the pressure-induced bandgap closure near the Fermi level. After metallization, they possess much higher electrical and thermal conductivity, which will facilitate the thermal convection, support a more stable and thicker D$\prime\prime$ layer, and formulate Earth's magnetic field, all of which will constrain the large-scale dynamos of the mantle and core.  相似文献   
2.
3.
本文用水热法制备了正交晶系的纳米球状结构的二氧化锡和正交晶系的由片状聚集成球状结构的钨酸铋,并且对二者进行了复合,制备出了二氧化锡/钨酸铋复合光催化材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、比表面积测试仪(BET)、紫外可见分光光度计等技术对复合样品的结构、形貌、比表面积、孔容孔径和光学性质进行了表征。用碘钨灯模拟太阳光,分别以二氧化锡、钨酸铋和二氧化锡/钨酸铋复合材料为催化剂降解罗丹明B(RhB),研究所制备的二氧化锡/钨酸铋复合材料的光催化活性。光催化90 min时二氧化锡、钨酸铋和二氧化锡/钨酸铋对罗丹明B的降解率分别是9%、22%和30%。实验结果表明,在可见光下,二氧化锡/钨酸铋复合材料的光催化活性要高于单一的二氧化锡和钨酸铋。  相似文献   
4.
For the first time, a novel, straightforward and inexpensive route for immobilization of metals in Schiff base complex form is reported applying 2,4‐toluenediisocyanate as a precursor of primary amine group. A nickel(II) Schiff base complex supported on nano‐TiO2 was designed and synthesized as an effective heterogeneous nanocatalyst for organic reactions, and well characterized using various techniques such as Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray analysis and thermogravimetric analysis. The catalytic efficiency of the complex was evaluated in selective oxidation of sulfide to sulfoxide by hydrogen peroxide as an oxidant under solvent‐free conditions at room temperature, which successfully resulted in high yield and high conversion of products. Effective factors including solvent type, oxidant and catalyst amount were also optimized. The catalyst shows outstanding reusability and could be impressively recovered for six consecutive cycles without significant change of its catalytic efficiency.  相似文献   
5.
A variety of heterobiaryl compounds have been synthesized by the Suzuki‐Miyaura coupling reactions of heteroaryl halides with potassium aryltrifluoroborates. Pd (OAc)2 was found to be highly efficient for the Suzuki‐Miyaura coupling reactions of various heteroaryl halides with potassium aryltrifluoroborates in aqueous systems, delivering the corresponding heterobiaryl compounds in good to excellent yields.  相似文献   
6.
Metal oxide photocatalysts (MOPCs) decompose organic molecules under illumination. However, the application of MOPCs in industry and research is currently limited by their intrinsic hydrophilicity because MOPCs can be wetted by most liquids. To achieve liquid repellency, the surface needs to possess a low surface energy, but most organic molecules with low surface energy are degraded by photocatalytic activity. Herein, current methods to achieve liquid repellency on MOPCs, while preventing degradation of hydrophobic coatings, are reviewed. Classically, composite materials containing MOPCs and hydrophobic organic compounds possess good liquid repellency. However, composites normally form irregular coatings and are hard to prepare on surfaces such as those that are mesoporous or nanostructured. In addition, the adhesion of composites to substrates is often weak, resulting in delamination. Recent studies have shown that the direct grafting reaction of polydimethylsiloxane (PDMS) from silicone oil (methyl-terminated PDMS) under illumination results in a stable polymer brush. This easy and simple grafting method allows us to create stable liquid-repellent surfaces on MOPCs of various types, structures, and sizes. In particular, super-liquid-repellent drops with an underlying air layer can be created on PDMS-grafted nano-/microstructured MOPCs. Potential applications of surfaces combining liquid repellency and photocatalytic activity are also discussed; thus offering new ways of using MOPCs in a wider range of applications.  相似文献   
7.
Fe–Sn–O mixed oxides were synthesized and used as catalysts for Baeyer–Villiger oxidation of cyclohexanone, which showed both high catalytic activity and selectivity. X‐ray powder diffraction and scanning electron microscopy suggested that the Fe–Sn–O catalysts had a tetragonal structure with a grain size of 29.3 nm. An ε‐caprolactone yield as high as 98.8% was obtained in a small‐scale experiment (5 mmol of cyclohexanone). In a scale‐up test (20 mmol of cyclohexanone), the cyclohexanone conversion and ε‐caprolactone yield were 96.7 and 96.5%, respectively. In addition, the catalysts can be reused five times without any major decline in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
The identification of catalytically active sites (CASs) in heterogeneous catalysis is of vital importance to design and develop improved catalysts, but remains a great challenge. The CASs have been identified in the low‐temperature selective catalytic reduction of nitrogen oxides by ammonia (SCR) over a hollandite manganese oxide (HMO) catalyst with a rod‐shaped morphology and one‐dimensional tunnels. Electron microscopy and synchrotron X‐ray diffraction determine the surface and crystal structures of the one‐dimensional HMO rods closed by {100} side facets and {001} top facets. A combination of X‐ray absorption spectra, molecular probes with potassium and nitric oxide, and catalytic tests reveals that the CASs are located on the {100} side facets of the HMO rods rather than on the top facets or in the tunnels, and hence semi‐tunnel structural motifs on the {100} facets are evidenced to be the CASs of the SCR reaction. This work paves the way to further investigate the intrinsic mechanisms of SCR reactions.  相似文献   
9.
Nanocarbon oxides have been proved to possess great peroxidase‐like activity, catalyzing the oxidation of many peroxidase substrates, such as 3,3′,5,5′‐tetramethylbenzidine (TMB) and o‐phenylenediamine dihydrochloride (OPD), accompanied by a significant color change. This chromogenic reaction is widely used to detect glucose and occult blood. The chromogenic reaction was intensively investigated with density functional theory and molecular‐level insights into the nature of peroxidase‐like activity were gained. A radical mechanism was unraveled and the carboxyl groups of nanocarbon oxides were identified as the reactive sites. Aromatic domains connected with the carboxyl groups were critical to the peroxidase‐like activity.  相似文献   
10.
This work describes the synthesis and full characterization of elusive chloropnictenium ion salts of the type [RAr*N(SiMe)ECl][A] (RAr*=2,6‐(CHPh2)‐4‐R‐C6H2, R=Me, tBu; E=Sb, Bi; A?=GaCl4, Al(OCH(CF3)2)4). In these species the cation is significantly stabilized by weak arene interactions to flanking phenyl groups of the RAr* moiety. In this context the bonding situation has been studied by computational means and the reactivity towards the Lewis base 4‐dimethylaminopyridine (dmap) was investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号