首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 272 毫秒
1.
Lubricant impregnated surfaces (LISs) exhibit sliding angles below 5°. A LIS is presented that possesses photocatalytic activity as well as improved liquid repellency. In a single‐step reaction, the surface of photocatalytic mesoporous TiO2 substrate is modified by grafting polydimethylsiloxane (PDMS) brush and the residual non‐bound PDMS serves as lubricant. Since the lubricant and the hydrophobic layer are chemically identical, the grafting PDMS layer is stably swollen by the lubricant PDMS, which inhibits direct contact of liquid drops to the solid substrate. Liquid drops such as water, methanol, and even low‐surface‐tension fluorocarbons, slide on the surface with tilt angles below 1°. The surface exhibits long‐term stable photocatalytic activity while retaining its liquid repellency. This photocatalytic activity allows photocatalytic chemistry, for example, decomposition of organics, on LIS to be carried out.  相似文献   

2.
Molecular mechanics and molecular dynamics calculations have been performed on organo-mineral composites that model the sorption of high-molecular-weight humic polymers on mineral surfaces and the sorption of low-molecular-weight organic contaminants on both mineral and organic surfaces in soil. Muscovite mica was chosen as a mineral model; an oxidized topological lignin-carbohydrate complex was chosen as a humic model; benzene, sodium benzoate, atrazine, and DDT represent different classes of contaminants. Sorption energies were estimated based on molecular mechanics calculations. Flexible linear polymers undergo drastic conformational changes when approaching the mineral surface, to ensure a gain in the interaction energy that outweighs a loss in the conformational energy proper. Therefore, the gas-phase conformation composi tion of environmental organic polymers is not directly related to their spatial organization in soil composites. Molecular dynamics simulation suggests high stability of the organic polymer coatings of mineral surfaces in the environment. Low-molecular-weight organic molecules demonstrate much less affinity for the mineral surface, which implies unhindered exchanges between the surface and its near environment. Ionizable compounds, e.g. salts of organic acids, are different, because they can form strong associations with a mineral surface through cation bridges. Sorption energies are compound-specific and depend on the sorbate-sorbent orientation. The calculations suggest some preference for the edges of a model muscovite sheet in comparison with the basal oxygen surface as a sorption site. Coating of mineral surfaces with organic polymers does not hinder the sorption of organic molecules except in the special case of organic ions.  相似文献   

3.
Control of surface properties in microfluidic systems is an indispensable prerequisite for successful bioanalytical applications. Poly(dimethylsiloxane) (PDMS) microfluidic devices are hampered from unwanted adsorption of biomolecules and lack of methods to control electroosmotic flow (EOF). In this paper, we propose different strategies to coat PDMS surfaces with poly(oxyethylene) (POE) molecules of varying chain lengths. The native PDMS surface is pretreated by exposure to UV irradiation or to an oxygen plasma, and the covalent linkage of POE-silanes as well as physical adsorption of a triblock-copolymer (F108) are studied. Contact angle measurements and atomic force microscopy (AFM) imaging revealed homogeneous attachment of POE-silanes and F108 to the PDMS surfaces. In the case of F108, different adsorption mechanisms to hydrophilic and hydrophobic PDMS are discussed. Determination of the electroosmotic mobilities of these coatings in PDMS microchannels prove their use for electrokinetic applications in which EOF reduction is inevitable and protein adsorption has to be suppressed.  相似文献   

4.
Following the achievement of superhydrophobicity which prevents water adhesion on a surface, superomniphobicity extends this high repellency property to a wide range of liquids, including oils, solvents, and other low surface energy liquids. Recent theoretical approaches have yield to specific microstructures design criterion to achieve such surfaces, leading to superomniphobic structured silicon substrate. To transfer this technology on a flexible substrate, we use a polydimethylsiloxane (PDMS) molding process followed by surface chemical modification. It results in so-called sticky superomniphobic surfaces, exhibiting large apparent contact angles (>150°) along with large contact angle hysteresis (>10°). We then focus on the modified Cassie equation, considering the 1D aspect of wetting, to explain the behavior of droplets on these surfaces and compare experimental data to previous works to confirm the validity of this model.  相似文献   

5.
The aim of this study was to develop a method of manufacturing versatile hydrophobic coatings for polymers. Authors present a simple technique of polyurethane (PU) surface modification with covalently attached silicones (PDMS) or fluorocarbons (PFC). Diisocyanates were applied as linker molecules. The obtained coatings were characterized using spectroscopic analysis (FTIR), scanning acoustic microscopy (SAM) and water contact angle measurements. FTIR analysis revealed high efficiency of grafting reaction. The results of contact angle measurement indicated significant increase of hydrophobicity — from 66° (unmodified PU) to 113° (PU grafted with PDMS) and 118° (PU grafted with PFC). Acoustic microscopy analysis confirmed satisfactory homogeneity and smoothness of the fabricated layers. In vitro cell tests revealed non-adherent properties of the surfaces. Both, MTT assay and fluorescence staining confirmed non-cytotoxicity of the coatings, which makes them potential candidates for use in biomedical applications.   相似文献   

6.
We describe a method based on plasma polymerization for the modification and control of the surface properties of poly(dimethylsiloxane) (PDMS) surfaces. By depositing plasma polymerized acrylic acid coatings on PDMS, we succeeded to fabricate stable (several days) hydrophilic and patterned hydrophobic/hydrophilic surfaces. We used this approach to generate direct and (for the first time in this material) double emulsions in PDMS microchannels.  相似文献   

7.
Photocatalytic hydrogen evolution is viewed as a promising green strategy to utilize the inexhaustible solar energy and provide clean hydrogen fuels with zero‐emission characteristic. The nature of semiconductor‐based photocatalysts is the key point to achieve efficient photocatalytic hydrogen evolution. Conjugated materials have been recently emerging as a novel class of photocatalysts for hydrogen evolution and photocatalytic reactions due to their electronic properties can be well controlled via tailor‐made chemical structures. Hydrophilic conjugated materials, a subgroup of conjugated materials, possess multiple advantages for photocatalytic applications, thus spurring remarkable progress on both material realm and photocatalytic applications. This minireview aims to provide a brief review of the recent developments of hydrophilic conjugated polymers/small molecules for photocatalytic applications, and special concern on the rational molecular design and their impact on photocatalytic performance will be reviewed. Perspectives on the hydrophilic conjugated materials and challenges to their applications in the photocatalytic field are also presented.  相似文献   

8.
Solid surfaces are modified by grafting poly(ethylene oxide), PEO, to influence their interaction with indwelling particles, in particular molecules of bovine serum albumin and human plasma proteins. As a rule, the grafted PEO layers suppress protein adsorption. The suppression is most effective when the PEO layer is in a molecular brush conformation having a reciprocal grafting density (area per grafted PEO chain) less than the dimensions of the protein molecules. Nevertheless, the protein molecules may penetrate the PEO brush to some extent. For a given grafting density, the penetration is facilitated by increasing thickness of the brush. Tenuous brushes of reciprocal grafting densities exceeding the protein molecular dimensions enhance protein adsorption. The results point to a weak attractive interaction between PEO and protein. The protein repellency of a densely PEO-brushed surface is ascribed to a high activation energy for the protein molecules to enter the brush. Varying the temperature between 22 and 38 degrees C does not significantly affect the range of grafting density over which the brush changes from protein-attractive to protein-repellent.  相似文献   

9.
Poly(dimethylsiloxane) (PDMS) substrates are used in many applications where the substrates need to be elongated and various treatments are used to regulate their surface properties. In this article, we compare the effect of three of such treatments, namely, UV irradiation, water plasma, and plasma polymerization, both from a molecular and from a macroscopic point of view. We focus our attention in particular on the behavior of the treated surfaces under mechanical stretching. UV irradiation induces the substitution of methyl groups by hydroxyl and acid groups, water plasma leads to a silicate-like layer, and plasma polymerization causes the formation of an organic thin film with a major content of anhydride and acid groups. Stretching induces cracks on the surface both for silicate-like layers and for plasma polymer thin coatings. This is not the case for the UV irradiated PDMS substrates. We then analyzed the chemical composition of these cracks. In the case of water plasma, the cracks reveal native PDMS. In the case of plasma polymerization, the cracks reveal modified PDMS. The contact angles of plasma polymer and UV treated surfaces vary only very slightly under stretching, whereas large variations are observed for water plasma treatments. The small variation in the contact angle values observed on the plasma polymer thin film under stretching even when cracks appear on the surface are explained by the specific chemistry of the PDMS in the cracks. We find that it is very different from native PDMS and that its structure is somewhere between Si(O2) and Si(O3). This is, to our knowledge, the first study where different surface treatments of PDMS are compared for films under stretching.  相似文献   

10.
The surface properties of poly(dimethyl siloxane) (PDMS) layers screen printed onto silicon wafers were studied after oxygen and ammonia plasma treatments and subsequent grafting of poly(ethylene -alt-maleic anhydride) (PEMA) using X-ray photoelectron spectroscopy (XPS), roughness analysis, and contact angle and electrokinetic measurements. In the case of oxygen-plasma-treated PDMS, a hydrophilic, brittle, silica-like surface layer containing reactive silanol groups was obtained. These surfaces indicate a strong tendency for "hydrophobic recovery" due to the surface segregation of low-molecular-weight PDMS species. The ammonia plasma treatment of PDMS resulted in the generation of amino-functional surface groups and the formation of a weak boundary layer that could be washed off by polar liquids. To avoid the loss of the plasma modification effect and to achieve stabilization of the mechanically instable, functionalized PDMS top layer, PEMA was subsequently grafted directly or after using gamma-APS as a coupling agent on the plasma-activated PDMS surfaces. In this way, long-time stable surface functionalization of PDMS was obtained. The reactivity of the PEMA-coated PDMS surface caused by the availability of anhydride groups could be controlled by the number of amino functional surface groups of the PDMS surface necessary for the covalent binding of PEMA. The higher the number of amino functional surface groups available for the grafting-to procedure, the lower the hydrophilicity and hence the lower the reactivity of the PEMA-coated PDMS surface. Additionally, pull-off tests were applied to estimate the effect of surface modification on the adhesion between the silicone rubber and an epoxy resin.  相似文献   

11.
Poly(dimethylsiloxane) (PDMS) is an attractive material for microelectrophoretic applications because of its ease of fabrication, low cost, and optical transparency. However, its use remains limited compared to that of glass. A major reason is the difficulty of tailoring the surface properties of PDMS. We demonstrate UV grafting of co-mixed monomers to customize the surface properties of PDMS microfluidic channels in a simple one-step process. By co-mixing a neutral monomer with a charged monomer in different ratios, properties between those of the neutral monomer and those of the charged monomer could be selected. Mixtures of four different neutral monomers and two different charged monomers were grafted onto PDMS surfaces. Functional microchannels were fabricated from PDMS halves grafted with each of the different mixtures. By varying the concentration of the charged monomer, microchannels with electrophoretic mobilities between +4 x 10(-4) cm2/(V s) and -2 x 10(-4) cm2/(V s) were attainable. In addition, both the contact angle of the coated surfaces and the electrophoretic mobility of the coated microchannels were stable over time and upon exposure to air. By carefully selecting mixtures ofmonomers with the appropriate properties, it may be possible to tailor the surface of PDMS for a large number of different applications.  相似文献   

12.
Condensation and freezing of droplets on superhydrophobic surfaces   总被引:1,自引:0,他引:1  
Superhydrophobic coatings are reported as promising candidates for anti-icing applications. Various studies have shown that as well as having ultra water repellency the surfaces have reduced ice adhesion and can delay water freezing. However, the structure or texture (roughness) of the superhydrophobic surface is subject to degradation during the thermocycling or wetting process. This degradation can impair the superhydrophobicity and the icephobicity of those coatings. In this review, a brief overview of the process of droplet freezing on superhydrophobic coatings is presented with respect to their potential in anti-icing applications. To support this discussion, new data is presented about the condensation of water onto physically decorated substrates, and the associated freezing process which impacts on the freezing of macroscopic droplets on the surface.  相似文献   

13.
Surface modification is an important technique in fields, such as, self‐cleaning, surface patterning, sensing, and detection. The diselenide bond was shown to be a dynamic covalent bond that can undergo a diselenide metathesis reaction simply under visible light irradiation. Herein we develop this diselenide dynamic chemistry into a versatile surface modification method with a fast response and reversibility. The diselenide bond could be modified onto various substrates, such as, PDMS, quartz, and ITO conductive film glass. Different functional diselenide molecules could then be immobilized onto the surface via diselenide metathesis reaction. We demonstrated that by using this modification method we could achieve liquid motion in a capillary tube under light illumination. We also show that this approach has the potential to serve as an efficient modification method for surface bioconjugation, which has practical applications in clinical usage.  相似文献   

14.
Strategies to modify metal oxide surfaces are important because of the increasing applications of metal oxides in catalysis, sensing, electronics, and renewable energy. Here, we report the formation of molecular monolayers on anatase nanocrystalline TiO(2) surfaces at near-ambient temperatures by a simple one-step immersion. This is achieved by an analogue of the Williamson ether synthesis, in which the hydroxyl groups of the TiO(2) surface react with iodo-alkane molecules to release HI and form a Ti-O-C surface linkage. The grafted molecules were characterized by Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the formation of covalently bonded monolayers. Kinetic studies yielded an activation barrier of ~59 kJ/mol for the grafting reaction. Measurements of hydrolytic stability of the grafted molecules in water show that approximately half the molecules are removed within minutes to hours at temperatures of 25-100 °C with an activation energy of ~82 kJ/mol, while the remaining molecules are stable for much longer periods of time. These different stabilities are discussed in terms of the different types of Ti-O-C bonds that can form on TiO(2) surfaces.  相似文献   

15.
Quantum chemical calculations have been carried out on the grafting of chain organosilane compounds on SiO(2)-hydroxylated solid surfaces. It is shown that a single molecule interacting with the surface lies flat to it, inhibiting further homogeneous film growth. This adsorption exhibits two molecule/surface interactions: a covalent bond on one side of the molecule and a hydrogen bond on the other side. We then investigate the possible preorganization of the molecules before grafting due to the presence of water molecules either in the gas/liquid phase or near the surface. This gives rise to the formation of dimerized chains. We then demonstrate that this preorganization process prevents subsequent lying flat of the molecules to the substrate after grafting. Energetics and associated configurations of the overall deposition process are discussed in detail and provide new insights on the understanding of the formation of self-assembled homogeneous organic films on microelectronics-type substrates.  相似文献   

16.
硅作为一种重要的半导体材料,在微电子领域发挥着极其重要的作用。有机分子修饰硅表面是近年来硅表面化学领域的一个研究热点,引起了研究者的广泛重视。以共价键嫁接在硅表面的有机单分子层能形成稳定、高质量的杂化连接,将赋予传统的硅材料更多新的功能,具有许多其它表面难以比拟的优点。本文针对有机分子修饰硅表面的方法、单层膜的表征和应用,对近年来的最新研究进展进行了综述,并对该方向的今后的发展进行了展望。  相似文献   

17.
The grafting of trialkoxysilane molecules should also give rise to the formation of a siloxane network at the substrate's surface when trialkoxysilanes are used. Other candidates that might be able to act as adhesion promoters at metallic surfaces are dimethylalkoxysilanes. The advantage of dimethylalkoxysilanes is that only one silanol group is produced during the hydrolysis step, leading to the formation of a grafted monolayer onto the steel. Moreover, the chemical grafting of stainless steel, which exhibits a low surface reactivity, is of great interest for industrial applications such as adhesive bonding or coatings. The objective of this work was to chemically graft dimethylalkoxysilanes onto AISI 316L stainless steel and to analyze the grafted layer by X‐ray photoelectron spectroscopy (XPS). Investigation of the hydrolysis of these molecules in aqueous solutions was also performed by proton nuclear magnetic resonance spectroscopy (1H NMR). The grafting of 3‐(ethoxydimethylsilyl)propylamine (APDES) and 3‐glycidoxypropyldimethylethoxysilane (GPDES) was achieved onto stainless steel after a controlled hydrolysis reaction. A pH inferior or equal to 5 was necessary to obtain a sufficient hydrolysis of silanes. XPS results have evidenced the grafting of the silanes onto stainless steel. The signal of the Si 2p peak clearly showed the formation of a covalent bond between APDES and the stainless steel surface through the O atoms giving rise to a uniform layer of adsorbed molecules. Moreover, this grafted layer is strongly stable as no removal of the alkoxysilane was observed after immersion in hot water which is very critical for these molecules. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
We report the coating of poly(dimethylsiloxane) (PDMS) microchannels using transition metal sol-gel chemistry and the subsequent characterization of the coatings. The channels were created using soft polymer lithography, and three metal alkoxide sol-gel precursors were investigated, titanium isopropoxide, zirconium isopropoxide, and vanadium triisobutoxide oxide. The metal alkoxides were diffused into the sidewalls of a PDMS channel and subsequently hydrolyzed using water vapor. This procedure resulted in the formation of durable metal oxide surfaces of titania, zirconia, or vanadia. The resulting surfaces were characterized using contact angle, X-ray photoelectron spectroscopy (XPS), Raman, transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and electroosmotic mobility (EOM) measurements. All of the metal oxide-modified PDMS surfaces were significantly more hydrophilic than native PDMS. Contact angles for the coatings were 90 degrees for PDMS-ZrO2, 61 degrees for PDMS-TiO2, and 19 degrees for PDMS-vanadia. XPS showed the presence of titania, zirconia, and vanadia on the PDMS surface. XPS spectra also showed no chemical modification of the PDMS after the in situ deposition of the particles either in the Si-O, Si-C, or C-H bonds of the PDMS. The particles deposited in situ were imaged with TEM and were found to be homogeneously distributed throughout the bulk of the PDMS. EOM measurements of the inorganic coatings were stable over a period of at least 95 days. Both cathodic and anodic EOMs could be generated depending upon buffer pH used. The points of net zero charge for PDMS-TiO2, PDMS-ZrO2, and PDMS-vanadia channels were calculated using EOM versus pH measurements and were found to be 4.1 +/- 0.25, 6.1 +/- 0.2, and 7.0 +/- 0.43, respectively. In addition to modifying PDMS channels with inorganic coatings, these inorganic coatings were derivatized with various organic functionalities including oligoethylene oxide (OEO), amino, perfluoro, or mercapto groups using silane chemistry. Contact angle measurements for perfluoro, mercapto, amino, and OEO-coated surfaces yielded contact angles of 120 degrees , 76 degrees , 45 degrees , and 23 degrees , respectively. These contact angles did not change over the period of 95 days. OEO-coated channels reduced the EOM by 50% from native PDMS-TiO2 to 0.9 +/- 0.05 x 10(-4) cm2/V.s (n = 5, 5.5% RSD).  相似文献   

19.
The liquid repellency and surface topography characteristics of coatings comprising a sprayed-on mixture of fluoroalkyl-functional precipitated silica and a fluoropolymer binder were examined using contact and sliding angle analysis, electron microscopy, and image analysis for determination of fractal dimensionality. The coatings proved to be an especially useful class of liquid repellent materials due to their combination of simple and scalable deposition process, low surface energy, and the roughness characteristics of the aggregates. These characteristics interact in a unique way to prevent the buildup of binder in interstitial regions, preserving re-entrant curvature across multiple length scales, thereby enabling a wide range of liquid repellency, including superoleophobicity. In addition, rather than accumulating in the interstices, the binder becomes widely distributed across the surface of the aggregates, enabling a mechanism in which a simple shortage or excess of binder controls the extent of coating roughness at very small length scales, thereby controlling the extent of liquid repellence.  相似文献   

20.
Surface-initiated grafting of N,N-dimethylacrylamide, styrenesulfonate (SS), and (ar-vinylbenzyl)trimethylammonium chloride (VBTAC) from microwave plasma carboxylated, initiator-functionalized poly(dimethylsiloxane) (PDMS) surfaces was accomplished utilizing reversible addition-fragmentation chain transfer (RAFT) polymerization. Surface spectroscopic attenuated total reflectance (ATR) FT-IR analysis and atomic force microscopy (AFM) measurements were utilized to determine surface grafting and morphological surface features. The VBTAC-grafted PDMS provided a smooth, hydrophilic cationic surface for creating layer-by-layer (LBL) surfaces via alternating deposition of well-defined poly(SS) and poly(VBTAC), also prepared via aqueous RAFT. Comparisons of the ATR FT-IR spectra of the LBL assemblies and those of respective anionic poly(SS) and cationic poly(VBTAC) components confirmed strong electrostatic complexation of a fraction of the sulfonate and quarternary ammonium species in the layers as well as the existence of noncomplexed species. AFM images of surface topology indicated the presence of domains, likely phase-separated segments of the respective homopolymers, as well as interlayer mixing. The employed LBL methodology results in formation of stable, highly hydrophilic surfaces on a PDMS substrate. To our knowledge, this is the first study that illustrates surface functionalization of PDMS using microwave plasma and RAFT polymerization, followed by LBL deposition of polyelectrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号