首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   753篇
  免费   73篇
  国内免费   17篇
化学   642篇
晶体学   5篇
力学   3篇
综合类   1篇
物理学   192篇
  2023年   3篇
  2022年   8篇
  2021年   12篇
  2020年   10篇
  2019年   12篇
  2018年   16篇
  2017年   10篇
  2016年   30篇
  2015年   25篇
  2014年   41篇
  2013年   70篇
  2012年   31篇
  2011年   27篇
  2010年   42篇
  2009年   54篇
  2008年   61篇
  2007年   76篇
  2006年   62篇
  2005年   65篇
  2004年   47篇
  2003年   33篇
  2002年   9篇
  2001年   9篇
  2000年   8篇
  1999年   10篇
  1998年   8篇
  1997年   18篇
  1996年   12篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
排序方式: 共有843条查询结果,搜索用时 109 毫秒
91.
Monodisperse magnetizable colloidal silica particles in a stable dispersion have been functionalized with a homogeneous catalyst: a PCP–pincer Pd-complex. In a proof-of-principle experiment we demonstrate the catalytic activity of the colloids in a C–C bond formation reaction. Advantages of the magnetic silica carriers are the large surface-to-volume ratio and the easy recovery by magnetic separation. After magnetic separation, the catalyst-loaded particles are readily redispersed for further use.  相似文献   
92.
93.
The aim of this study was to develop novel thermally responsive polymer microspheres with magnetic properties. Dispersion and inverse emulsion copolymerization of N‐isopropylacrylamide (NIPAAm) and N,N′‐methylenebisacrylamide (MBAAm) was investigated in the presence of γ‐Fe2O3 nanoparticles. The resulting microspheres were characterized in terms of morphology, size, polydispersity, iron content, and temperature‐dependent swelling using optical microscopy, transmission electron microscopy, scanning electron microscopy, QELS, and AAS. The effects of several variables, such as the concentration of γ‐Fe2O3, MBAAm crosslinking agent, Span 80 surfactant, 2,2′‐azobis(2‐methyloctanenitrile) (AMON) initiator, and polymerization temperature on the properties of the microspheres were studied. Swelling and thermoresponsive behavior of the microspheres containing γ‐Fe2O3 nanoparticles were also investigated. The microspheres contained about 8 wt % of iron. The presence of magnetic nanoparticles and their concentration changes did not have any significant effect on the temperature sensitivity of the composites. The particles gradually shrink into an increasingly collapsed state when the temperature is raised to 40 °C since the increase in temperature weakens the hydration and PNIPAAm chains gradually become more hydrophobic, which leads to the collapse of the particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5884–5898, 2007  相似文献   
94.
We previously developed a renovated Maxwell model for the effective thermal conductivity of nanofluids and determined that the solid/liquid interfacial layers play an important role in the enhanced thermal conductivity of nanofluids. However, this renovated Maxwell model is limited to suspensions with spherical particles. Here, we extend the Hamilton--Crosser model for suspensions of nonspherical particles to include the effect of a solid/liquid interface. The solid/liquid interface is described as a confocal ellipsoid with a solid particle. The new model for the three-phase suspensions is mathematically expressed in terms of the equivalent thermal conductivity and equivalent volume fraction of anisotropic complex ellipsoids, as well as an empirical shape factor. With a generalized empirical shape factor, the renovated Hamilton--Crosser model correctly predicts the magnitude of the thermal conductivity of nanotube-in-oil nanofluids. At present, this new model is not able to predict the nonlinear behavior of the nanofluid thermal conductivity.  相似文献   
95.
The transport of monodisperse as well as polydisperse colloid suspensions in a two-dimensional, water saturated fracture with spatially variable and anisotropic aperture is investigated with a particle tracking model. Both neutrally buoyant and dense colloid suspensions are considered. Although flow and transport in fractured subsurface formations have been studied extensively by numerous investigators, the transport of dense, polydisperse colloid suspensions in a fracture with spatially variable and anisotropic aperture has not been previously explored. Simulated snapshots and breakthrough curves of ensemble averages of several realizations of a log-normally distributed aperture field show that polydisperse colloids exhibit greater spreading than monodisperse colloids, and dense colloids show greater retardation than neutrally buoyant colloids. Moreover, it is demonstrated that aperture anisotropy oriented along the flow direction substantially increases colloid spreading; whereas, aperture anisotropy oriented transverse to the flow direction retards colloid movement.  相似文献   
96.
Effects of a low molecular weight physically adsorbed polyethylene oxide (PEO) and the range of the electrostatic repulsion on the rheological behavior of silica dispersions (as a model system) has been investigated. Particular attention is given to the evolution of the rheological behavior with increasing the polymer concentration in the system and also effectiveness of the polymer as a dispersant under extreme conditions (high ionic strength). Results indicate that at small separation distances and low polymer coverage, the polymer chains are long enough to adsorb on the surface of two particles simultaneously causing bridging flocculation in the system and hence increasing the viscosity and linear viscoelastic functions of the dispersion. A significant increase was observed in the viscosity of the dispersion at salt concentrations high enough to eliminate electrostatics between the particles. Under these conditions,the viscosity of the system increased significantly when PEO was added to the dispersion showing that at high electrolyte concentrations, a neutral polymer such as PEO is not able to stabilize the system.  相似文献   
97.
98.
99.
Magnetic and orientational behavior of nickel hydroxide nanoplatelets ionically stabilized in a liquid matrix is studied. Under an applied field the platelets orient their faces normal to its direction. For characterization of the individual behavior of dispersed and non-interacting particles three techniques are used: SAXS, SQUID and magneto-optics. Analysis reveals that nickel hydroxide in a platelet phase is paramagnetic with a pronounced anisotropy of the intrinsic susceptibility, the major component of which (in the direction normal to platelet face) exceeds the minor one by about 25%.  相似文献   
100.
Colloidal, monodisperse, single-crystalline pyramidal CuInS2 and rectangular AgInS2 nanocrystals were successfully synthesized through a convenient and improved solvothermal process that uses hexadecylamine as a capping reagent. The crystal phase, morphology, crystal lattice, and chemical composition of the as-prepared products were characterized by using X-ray diffraction, transmission electron microscopy (TEM), high-resolution TEM, and energy dispersive X-ray spectroscopy. Results revealed that the as-synthesized CuInS2 colloid is in the tetragonal phase (size: 13-17 nm) and the AgInS2 in the orthorhombic structure (size: 17+/-0.5 nm). A possible shape evolution and crystal growth mechanism has been suggested for the formation of pyramidal CuInS2 and rectangular AgInS2 colloids. Control experiments indicated that the morphology- and/or phase-change of CuInS2 and orthorhombic AgInS2 colloids are temperature- and/or time-dependent. CuInS2 colloids absorb well in the range of visible light at room-temperature, indicating its potential application as a solar absorber. Two photoluminescence (PL) subbands at 1.938 and 2.384 eV in the PL spectra of CuInS2 colloids revealed that the recombination of the closest and the second closest donor-acceptor pairs within the CuInS2 lattice, in which the donor defect (Cui) occupies an interstitial position and the acceptor defect (VIn) resides at an adjacent cation site. In addition, the synthesis strategy developed in this study is convenient and inexpensive, and could also be used as a general process for the synthesis of other pure or doped ternary chalcogenides that require a controlled size (or shape). This process could be extended to the synthesis of other functional nanomaterials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号