首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   753篇
  免费   73篇
  国内免费   17篇
化学   642篇
晶体学   5篇
力学   3篇
综合类   1篇
物理学   192篇
  2023年   3篇
  2022年   8篇
  2021年   12篇
  2020年   10篇
  2019年   12篇
  2018年   16篇
  2017年   10篇
  2016年   30篇
  2015年   25篇
  2014年   41篇
  2013年   70篇
  2012年   31篇
  2011年   27篇
  2010年   42篇
  2009年   54篇
  2008年   61篇
  2007年   76篇
  2006年   62篇
  2005年   65篇
  2004年   47篇
  2003年   33篇
  2002年   9篇
  2001年   9篇
  2000年   8篇
  1999年   10篇
  1998年   8篇
  1997年   18篇
  1996年   12篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
排序方式: 共有843条查询结果,搜索用时 15 毫秒
81.
The glass transition is the most enduring grand-challenge problem in contemporary condensed matter physics. Here, we review the contribution of colloid experiments to our understanding of this problem. First, we briefly outline the success of colloidal systems in yielding microscopic insights into a wide range of condensed matter phenomena. In the context of the glass transition, we demonstrate their utility in revealing the nature of spatial and temporal dynamical heterogeneity. We then discuss the evidence from colloid experiments in favor of various theories of glass formation that has accumulated over the last two decades. In the next section, we expound on the recent paradigm shift in colloid experiments from an exploratory approach to a critical one aimed at distinguishing between predictions of competing frameworks. We demonstrate how this critical approach is aided by the discovery of novel dynamical crossovers within the range accessible to colloid experiments. We also highlight the impact of alternate routes to glass formation such as random pinning, trajectory space phase transitions and replica coupling on current and future research on the glass transition. We conclude our review by listing some key open challenges in glass physics such as the comparison of growing static length scales and the preparation of ultrastable glasses that can be addressed using colloid experiments.  相似文献   
82.
Hypernetted chain (HNC) integral equation theory has been used to study the structural features of binary charged stabilized colloidal suspensions confined to a two-dimensional plane. The particles interact via purely repulsive Yukawa intermolecular potential, the inverse screening length scaled by the average distance between strongly interacting components of the mixture (dimensionless screening parameter) being 1, 3 and 5. Results of HNC theory for one-component systems are found to be in very good agreement with that of simulation, in the parameter range of our study. Binary Yukawa systems with dimensionless screening parameters 1 and 3 are found to exhibit diffuse clusters of the weakly interacting particles, marked by the emergence of a cluster peak in the corresponding partial structure factor curves. No cluster peak is found in the system with the screening parameter 5. For the entire range of mixture parameters, the strongly interacting particles remain homogeneously distributed.  相似文献   
83.
The aim of this study was to develop novel thermally responsive polymer microspheres with magnetic properties. Dispersion and inverse emulsion copolymerization of N‐isopropylacrylamide (NIPAAm) and N,N′‐methylenebisacrylamide (MBAAm) was investigated in the presence of γ‐Fe2O3 nanoparticles. The resulting microspheres were characterized in terms of morphology, size, polydispersity, iron content, and temperature‐dependent swelling using optical microscopy, transmission electron microscopy, scanning electron microscopy, QELS, and AAS. The effects of several variables, such as the concentration of γ‐Fe2O3, MBAAm crosslinking agent, Span 80 surfactant, 2,2′‐azobis(2‐methyloctanenitrile) (AMON) initiator, and polymerization temperature on the properties of the microspheres were studied. Swelling and thermoresponsive behavior of the microspheres containing γ‐Fe2O3 nanoparticles were also investigated. The microspheres contained about 8 wt % of iron. The presence of magnetic nanoparticles and their concentration changes did not have any significant effect on the temperature sensitivity of the composites. The particles gradually shrink into an increasingly collapsed state when the temperature is raised to 40 °C since the increase in temperature weakens the hydration and PNIPAAm chains gradually become more hydrophobic, which leads to the collapse of the particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5884–5898, 2007  相似文献   
84.
Hollow spherical molybdenum disulfide has been successfully synthesized via a solvothermal method using Cyanex 301 as sulfur source and modification agent. The hollow spheres are characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction and Energy-Dispersive X-ray analysis. The influences of reaction conditions are also discussed while a mechanism is proposed to explain the formation of the peculiar morphology.  相似文献   
85.
Bimolecular termination in nitroxide‐mediated radical polymerization in miniemulsion has been investigated through the heating of a polystyrene–2,2,6,6‐tetramethylpiperidinyl‐1‐oxy macroinitiator and its 4‐hydroxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy analogue in an aqueous toluene dispersion with sodium dodecyl benzenesulfonate as a surfactant at 125 °C. The level of bimolecular termination by combination, evaluated from the high‐molecular‐weight shoulder, was higher in miniemulsion than in solution and increased with decreasing particle size. Quantitative analysis revealed that these results cannot be rationalized solely by nitroxide partitioning to the aqueous phase. The results are explained by an interface effect, by which nitroxide is adsorbed or located at the aqueous–organic interface. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4995–5004, 2007  相似文献   
86.
Particles are ubiquitous in all natural systems and play an important role in the control and fate of nutrients and pollutants. Currently, only limited information is available concerning particle number and size distributions, owing to the problems involved in their experimental determination. In the present paper, limitations and optimal conditions for particle size determinations of environmental samples using photon correlation spectroscopy are studied. The detection limit, the effects of polydispersity of the sample and the refractive index value are discussed based on results obtained with synthetic colloids. The photon correlation spectroscopic determination of particle size distributions in real aquatic systems is also presented in the second part of the paper.  相似文献   
87.
We use a multispeckle diffusing wave spectroscopy (MSDWS) method to study the ensemble-averaged dynamics of the fluctuating speckle pattern when illuminating colloidal particles suspended in a static and opaque porous medium with a coherent light source. Experiments were performed with Brownian latex particles in a random packing of glass spheres. The mixing of the light scattered by the moving colloidal particles and the porous matrix gives rise to a plateau value of the intensity autocorrelation function in the long-waiting-time limit. From the plateau in the correlation function, we can determine the fraction of light scattered from moving particles and estimate the photon mean free path in the colloidal solution. The method opens up promising possibilities to probe the static fraction in semisolid materials.  相似文献   
88.
Functional spheres : Monodisperse gold‐doped titania spheres with tunable sizes under high concentration of titanium precursor have been synthesized by introducing trace amounts of chloroauric acid into the reaction system. Surface photovoltage, surface photocurrent, and transient photovoltage measurements (see figure) of annealed samples reveal that gold nanodots can act as both electron acceptors and donors under the illumination of different wavelengths of light.

  相似文献   

89.
Magnetic and orientational behavior of nickel hydroxide nanoplatelets ionically stabilized in a liquid matrix is studied. Under an applied field the platelets orient their faces normal to its direction. For characterization of the individual behavior of dispersed and non-interacting particles three techniques are used: SAXS, SQUID and magneto-optics. Analysis reveals that nickel hydroxide in a platelet phase is paramagnetic with a pronounced anisotropy of the intrinsic susceptibility, the major component of which (in the direction normal to platelet face) exceeds the minor one by about 25%.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号