首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   753篇
  免费   73篇
  国内免费   17篇
化学   642篇
晶体学   5篇
力学   3篇
综合类   1篇
物理学   192篇
  2023年   3篇
  2022年   8篇
  2021年   12篇
  2020年   10篇
  2019年   12篇
  2018年   16篇
  2017年   10篇
  2016年   30篇
  2015年   25篇
  2014年   41篇
  2013年   70篇
  2012年   31篇
  2011年   27篇
  2010年   42篇
  2009年   54篇
  2008年   61篇
  2007年   76篇
  2006年   62篇
  2005年   65篇
  2004年   47篇
  2003年   33篇
  2002年   9篇
  2001年   9篇
  2000年   8篇
  1999年   10篇
  1998年   8篇
  1997年   18篇
  1996年   12篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
排序方式: 共有843条查询结果,搜索用时 31 毫秒
51.
A method is developed for anchoring enzymatically degraded cationized starch as electrosteric stabilizers onto synthetic latices, using cerium(IV) to create free‐radical grafting sites on the starch. Direct anchoring of debranched starch onto a poly(methyl methacrylate) seed latex yields a latex stabilized by well‐defined oligosaccharides. Using α‐amylase to randomly cleave starch to form (1→4)‐α‐glucans, and a comonomer, N‐isopropyl acrylamide (NIPAM), whose corresponding polymer exhibits a lower critical solution temperature (LCST), creates a means to synthesize block (or graft) oligomers of oligosaccharide and synthetic polymer, which are water soluble at room temperature. Above 30 °C, they become amphiphilic and form self‐emulsifying nanoparticles (sometimes termed “frozen micelles”) from which a synthetic latex is grown after addition of methyl methacrylate, the collapsed NIPAM‐containing entities functioning as a type of in situ seed. This synthesis of stable synthetic latex particles is shown to have a high grafting efficiency. The starch fragments were characterized by 1H solution‐state NMR before grafting, and 13C solid‐state cross‐polarization magic‐angle spinning (CP‐MAS) NMR was used to characterize the starch oligomers actually grafted on the final latex. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1836–1852, 2009  相似文献   
52.
Phase and shape controlling of MnS nanocrystals in the solvothermal process   总被引:2,自引:0,他引:2  
MnS nanocrystals with different phases and shapes were prepared through solvothermal synthesis. The products were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV–vis absorption and photoluminescence (PL) spectra. The solvent and reaction time played an important role in controlling the phase and shape of MnS nanocrystals. The possible mechanism of the shape evolution was investigated, which revealed that the crystal growth along the unique c axis of γ-MnS resulted in the rod-like MnS at the primary period, and the tetrahedral crystal seed of β-MnS with zincblende structure resulted in the interlinking of MnS rods, so the zigzag and three-branched and palm-like MnS appeared; with increasing reactive time the thermodynamically stable spherical α-MnS was favored through the Ostwald ripening process. The PL results showed that the intensity of γ-MnS was much weaker than that of α-MnS, and the trap state emissions of γ-MnS at 470 and 482 nm, respectively, disappeared, which might be ascribed to the difference of the shapes between the sphere and the rod or branch.  相似文献   
53.
Conventional and microwave heating were compared for free radical dispersion polymerizations of crosslinked copolymers of 2‐ethylhexyl methacrylate, vinylbenzyl chloride (VBC), and fluoroalkyl methacryate monomers in the solvent nonafluorobutyl ethyl ether, and for the functional conversion of the VBC units of the copolymer particles with trimethylamine to quaternary ammonium chloride units. By conventional heating, all polymerizations produced foamy coagulated products consisting of primary spherical particles 1–2 μm in diameter. Microwave heating using poly(1H,1H‐dihydroperfluorooctyl acrylate) as a stabilizer gave faster polymerization and stable dispersions of discrete 1 μm particles. Microwave heating also gave faster reactions of the copolymers with trimethylamine to produce quaternary ammonium chloride functionalized colloidal particles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3813–3819, 2008  相似文献   
54.
Poly[2‐(dimethylamino) ethyl methacrylate] (PDMAEMA) brushes on the surfaces of clay layers were prepared by in situ free‐radical polymerization. Poly (methyl methacrylate) (PMMA) colloid particles stabilized and initiated by clay layers with PDMAEMA polymer brushes were prepared by Pickering emulsion polymerization. Transmission electron microscopy was used to characterize the structure and morphology of the colloid particles. The X‐ray diffraction (XRD) results indicated that the intercalated structures of the clay layers were almost destroyed in Pickering emulsion polymerization, and clay layers with exfoliated structures were created. The surface of the colloid particles was analyzed by using X‐ray photoelectron spectroscopy (XPS). The XPS results provide direct evidence that the clay layers with PDMAEMA chains cover the PMMA colloid particles. © 2008 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 46: 2632–2639, 2008  相似文献   
55.
A series of ABA amphiphilic triblock copolymers possessing polystyrene (PS) central hydrophobic blocks, one group with “short” PS blocks (DP = 54–86) and one with “long” PS blocks (DP = 183–204) were synthesized by atom transfer radical polymerization. The outer hydrophilic blocks were various lengths of poly(oligoethylene glycol methyl ether) methacrylate, a comb‐like polymer. The critical aggregation concentrations were recorded for certain block copolymer samples and were found to be in the range circa 10−9 mol L−1 for short PS blocks and circa 10−12 mol L−1 for long PS blocks. Dilute aqueous solutions were analyzed by transmission electron microscopy (TEM) and demonstrated that the short PS block copolymers formed spherical micelles and the long PS block copolymers formed predominantly spherical micelles with smaller proportions of cylindrical and Y‐branched cylindrical micelles. Dynamic light scattering analysis results agreed with the TEM observations demonstrating variations in micelle size with PS and POEGMA chain length: the hydrodynamic diameters (DH) of the shorter PS block copolymer micelles increased with increasing POEGMA block lengths while maintaining similar PS micellar core diameters (DC); in contrast the values of DH and DC for the longer PS block copolymer micelles decreased. Surface‐pressure isotherms were recorded for two of the samples and these indicated close packing of a short PS block copolymer at the air–water interface. The aggregate solutions were demonstrated to be stable over a 38‐day period with no change in aggregate size or noticeable precipitation. The cloud point temperatures of certain block copolymer aggregate solutions were measured and found to be in the range 76–93 °C; significantly these were ∼11 °C higher in temperature than those of POEGMA homopolymer samples with similar chain lengths. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7739–7756, 2008  相似文献   
56.
In this work, the preparation of highly thermoresponsive and fully reversible stretch‐tunable elastomeric opal films featuring switchable structural colors is reported. Novel particle architectures based on poly(diethylene glycol methylether methacrylate‐co‐ethyl acrylate) (PDEGMEMA‐co‐PEA) as shell polymer are synthesized via seeded and stepwise emulsion polymerization protocols. The use of DEGMEMA as comonomer and herein established synthetic strategies leads to monodisperse soft shell particles, which can be directly processed to opal films by using the feasible melt‐shear organization technique. Subsequent UV crosslinking strategies open access to mechanically stable and homogeneous elastomeric opal films. The structural colors of the opal films feature mechano‐ and thermoresponsiveness, which is found to be fully reversible. Optical characterization shows that the combination of both stimuli provokes a photonic bandgap shift of more than 50 nm from 560 nm in the stretched state to 611 nm in the fully swollen state. In addition, versatile colorful patterns onto the colloidal crystal structure are produced by spatial UV‐induced crosslinking by using a photomask. This facile approach enables the generation of spatially cross‐linked switchable opal films with fascinating optical properties. Herein described strategies for the preparation of PDEGMEMA‐containing colloidal architectures, application of the melt‐shear ordering technique, and patterned crosslinking of the final opal films open access to novel stimuli‐responsive colloidal crystal films, which are expected to be promising materials in the field of security and sensing applications.

  相似文献   

57.
A novel photo and pH‐responsive amphiphilic pyrene‐functionalized polymer is synthesized by the esterification reaction between poly(acryloyl chloride) and pyrenemethanol and subsequent hydrolysis of the unreacted acylchloride groups. This random copolymer consists of hydrophobic pyrene‐containing acrylate units and hydrophilic acrylic acid units, which can self‐assemble into nanoparticles in water. Under UV irradiation, the nanoparticles can be disrupted with decreasing particle number resulted from the photolysis of pyrenylmethyl esters, where the hydrophobic segments are converted to hydrophilic acrylic acids; at low pH, the acrylic acid segments are protonated and collapsed, thus the nanoparticles will be shrunk and aggregated; at high pH, the nanoparticles change to fractal structures owing to the aggregation of partially dissociated nanoparticles and the subsequent structural reorganization of the clusters. The controlled release of Nile Red from the nanoparticles stimulated by photo and pH separately and synergistically is demonstrated. The nanoparticles self‐assembled from the dual‐stimuli‐sensitive polymer can be used as a new nanocarrier and find their applications in delivery system.

  相似文献   

58.
Styrene microemulsion polymerizations with different short‐chain alcohols [n‐CiH2i+1OH (CiOH), where i = 4, 5, or 6] as the cosurfactant were investigated. Sodium dodecyl sulfate and sodium persulfate (SPS) were used as the surfactant and initiator, respectively. The desorption of free radicals out of latex particles played an important role in the polymerization kinetics. An Arrhenius expression for the radical desorption rate coefficient was obtained from the polymerizations at temperatures of 50–70 °C. The polymerization kinetics were not very sensitive to the alkyl chain length of alcohols compared with the temperature effect. The maximal polymerization rate in decreasing order was C6OH > C4OH > C5OH. This was related to the differences in the water solubility of CiOH and the structure of the oil–water interface. The feasibility of using a water‐insoluble dye to study the particle nucleation mechanisms was also evaluated. The parameters chosen for the study of the particle nucleation mechanisms include the cosurfactant type (CiOH), the SPS concentration, and the initiator type (oil‐soluble 2,2′‐azobisisobutyronitrile versus water‐soluble SPS). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3199–3210, 2001  相似文献   
59.
Lattice-Boltzmann Simulations of Particle-Fluid Suspensions   总被引:10,自引:0,他引:10  
This paper reviews applications of the lattice-Boltzmann method to simulations of particle-fluid suspensions. We first summarize the available simulation methods for colloidal suspensions together with some of the important applications of these methods, and then describe results from lattice-gas and lattice-Boltzmann simulations in more detail. The remainder of the paper is an update of previously published work,(69, 70) taking into account recent research by ourselves and other groups. We describe a lattice-Boltzmann model that can take proper account of density fluctuations in the fluid, which may be important in describing the short-time dynamics of colloidal particles. We then derive macro-dynamical equations for a collision operator with separate shear and bulk viscosities, via the usual multi-time-scale expansion. A careful examination of the second-order equations shows that inclusion of an external force, such as a pressure gradient, requires terms that depend on the eigenvalues of the collision operator. Alternatively, the momentum density must be redefined to include a contribution from the external force. Next, we summarize recent innovations and give a few numerical examples to illustrate critical issues. Finally, we derive the equations for a lattice-Boltzmann model that includes transverse and longitudinal fluctuations in momentum. The model leads to a discrete version of the Green–Kubo relations for the shear and bulk viscosity, which agree with the viscosities obtained from the macro-dynamical analysis. We believe that inclusion of longitudinal fluctuations will improve the equipartition of energy in lattice-Boltzmann simulations of colloidal suspensions.  相似文献   
60.
We examine the thermodynamic limit of fluids of hard core particles that are polydisperse in size and shape. In addition, particles may interact magnetically. Free energy of such systems is a random variable because it depends on the choice of particles. We prove that the thermodynamic limit exists with probability 1, and is independent of the choice of particles. Our proof applies to polydisperse hard-sphere fluids, colloids and ferrofluids. The existence of a thermodynamic limit implies system shape and size independence of thermodynamic properties of a system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号