首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5833篇
  免费   425篇
  国内免费   2033篇
化学   6773篇
晶体学   101篇
力学   68篇
综合类   194篇
数学   23篇
物理学   1132篇
  2024年   17篇
  2023年   83篇
  2022年   98篇
  2021年   68篇
  2020年   64篇
  2019年   63篇
  2018年   53篇
  2017年   60篇
  2016年   95篇
  2015年   123篇
  2014年   207篇
  2013年   243篇
  2012年   249篇
  2011年   273篇
  2010年   269篇
  2009年   347篇
  2008年   351篇
  2007年   317篇
  2006年   457篇
  2005年   391篇
  2004年   413篇
  2003年   403篇
  2002年   539篇
  2001年   406篇
  2000年   270篇
  1999年   257篇
  1998年   257篇
  1997年   214篇
  1996年   193篇
  1995年   239篇
  1994年   175篇
  1993年   159篇
  1992年   238篇
  1991年   217篇
  1990年   189篇
  1989年   191篇
  1988年   54篇
  1987年   16篇
  1986年   9篇
  1985年   10篇
  1984年   8篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有8291条查询结果,搜索用时 31 毫秒
81.
采用中频感应熔炼法制备了Sm( Co0.79 Fe0.09 Cuo.085 Zr0.032) 7.95合金,采用传统烧结工艺,在1200 ~1240℃烧结1h,1165 ~1190℃固溶处理3h,快速风冷淬火后在840 ℃保温12h,以0.4 ·min-1的冷速冷却至420℃,保温10h,最后随炉冷却.磁体经过加工后,采用不同的磁性测试手段对磁体进行测试.结果表明,磁体的剩磁随烧结温度的升高而增大,矫顽力最好的工艺为1230℃烧结1h,然后在1180℃固溶3h.将此工艺制备的磁体采用中国计量科学院NIM-500C超高温永磁测量仪测试,磁体在773 K时的最大磁能积为10.94 MGOe,高于已经报道的同Z值的2∶17型永磁体.磁体的磁滞回线通过振动样品磁强计( VSM)测得,室温下Br=10.5 kGs,Hcj=30.21 kOe,(BH)max=25.60MGOe; 773 K时磁体Br=7.45 kGs,Hcj=6.02 kOe,(BH) max=9.85 MGOe.剩磁温度系数α=-0.0624%·℃-1,矫顽力温度系数β=-0.169%·℃-1.  相似文献   
82.
为提高蓝绿色荧光粉的发光性能,本文采用传统的高温固相法合成LaNbO4∶Dy3+及LaNbO4∶Dy3+,Ca2+荧光粉样品。通过测试样品的XRD、荧光光谱和CIE色度坐标,研究Dy3+单掺,Dy3+、Ca2+共掺对LaNbO4荧光粉性能的影响。结果表明:LaNbO4∶Dy3+及LaNbO4∶Dy3+,Ca2+荧光粉的衍射峰都与标准卡衍射峰的位置相匹配。样品的激发光谱均由两个宽带激发峰和一系列尖锐激发峰组成,LaNbO4∶Dy3+和LaNbO4∶Dy3+,Ca2+样品的最强激发峰位分别是387和472 nm。在波长为387 nm激发下,样品的最强发射峰值分别是575和477 ...  相似文献   
83.
以1,4-双(二苯基膦)丁烷为交联剂,以具有四甲基联苯结构的聚芳醚酮为基体材料,分别制备了刚性三苯基膦和柔性三丁基膦修饰的阴离子交联膜材料.交联剂在交联结构形成的过程中转变成季膦盐,在提高膜材料机械稳定性的同时保持离子交换功能基团的含量.研究了2种阴离子交换膜的尺寸稳定性、电导率、机械性能及耐碱稳定性等.研究结果表明,当交联度为20%时,三苯基膦与三丁基膦修饰的阴离子交换膜的拉伸强度分别由未交联时的27和18 MPa提高到45和30 MPa;交联的膜材料在60℃的3 mol/L KOH溶液中浸泡120 h后,三苯基膦修饰的阴离子交换膜的电导率保留率为81%,三丁基膦修饰的阴离子交换膜的电导率保留率为69%,膜的耐碱稳定性均较未交联时有明显提高.交联度相同时,三苯基膦修饰的阴离子交换膜表现出更高的拉伸强度和更好的耐碱稳定性.  相似文献   
84.
测定了La F3和La OF在饱和水蒸气气氛下1000℃焙烧3 h后的脱氟率,采用X射线衍射技术对焙烧产物进行了物相分析。测定了氟碳铈矿在饱和水蒸气气氛下700~1000℃焙烧3 h后的焙烧产物中的氟含量,并对焙烧产物进行了物相分析,对焙烧前后的氟碳铈矿进行了SEM扫描对比分析。结果表明:氟碳铈矿发生脱氟反应的过程为:REF3·RE2(CO3)3首先分解生成REF3和RE2O3,同时伴随REOF的生成,然后在有水分子的条件下,REF3,REOF相继发生脱氟反应生成RE2O3和HF。  相似文献   
85.
通过采用碳酸镧(铈、镨)为前驱体,经氟化、高温焙烧、机械湿磨的方法得到稀土抛光粉,研究了不同掺镨量对稀土抛光粉的物相结构、表面形貌、粒度、密度、抛蚀量的影响。通过XRD分析得出结论:La2O3,Pr6O11固溶于CeO2的晶格结构中,并且出现了新的物相LaOF;随镨掺量的增大,LaOF的衍射峰强度不断增加,晶化程度不断增加;CeO2的XRD特征峰向左偏移,晶胞参数变大,晶面间距变大。通过粒度分析得出结论:随镨掺量的增加,抛光粉的中位粒径出现了先减小后增大的规律性变化。通过抛蚀量测试得出结论:随镨掺量的增加,抛光粉的抛蚀量出现了先增大后减小的变化。掺镨稀土抛光在镨含量为4.8%时,具有最小的中位粒径、较好的表面形貌和最大的抛蚀量。  相似文献   
86.
含氟体系中,在负载晶种的大孔莫来石支撑体表面快速合成了高性能且取向生长的T型分子筛膜。采用XRD、SEM和MASNMR等手段对分子筛膜层和粉末进行表征。讨论了添加物、氟硅比、合成温度和合成时间等条件对膜生长与分离性能的影响,并阐述了含氟体系中T型分子筛膜快速晶化的机理。碱金属氟盐的加入促进了T型分子筛晶体层的晶化速率,并对晶体层形貌产生了一定的影响。膜应用于75℃、水/异丙醇(10:90,w/w)体系的平均渗透通量和分离因子分别为(4.91±0.18)kg·m-2·h-1和7060±1130。  相似文献   
87.
用2,4,6-吡啶三甲酸和稀土钐、镝或钆的高氯酸盐溶液、碳酸锶、碳酸钾在180℃水热条件下进行反应,制备出3个含有3种金属离子的配位聚合物[LnSrK(ptc)2(H2O)]n(Ln=Sm(1)、Dy(2)、Gd(3),H3ptc=2,4,6-吡啶三甲酸)。X射线单晶衍射分析表明三者具有相同的结构,属三斜晶系,P1空间群。配合物中配体2,4,6-吡啶三甲酸根以2种不同的配位方式与3种金属离子配位,一种方式中连接了7个金属离子,另一种方式中连接了8个金属离子。Ln(Ⅲ)为八配位,与羧基上的6个氧原子和2个吡啶环上的2个氮原子配位;Sr(Ⅱ)也是八配位,配位原子均为氧原子;K(I)与5个氧原子配位。荧光发射光谱表明,钐和镝的配合物在紫外光激发下均发射Sm(Ⅲ)和Dy(Ⅲ)两种离子的特征荧光,钆的配合物在紫外光激发下由于发生荷移跃迁而发射绿色荧光。  相似文献   
88.
用密度泛函方法在B3LYP/6-31G(d,p)基组水平上对反应系统中的所有物种进行全优化,用CPCM溶剂模型在同一基组水平上进行了单点计算,系统研究了硅醇盐前驱体Si(OCH3)4在酸性条件下的水解、聚合机理,阐明了二者的相互竞争关系.研究发现,H2O以氢键或配位键与前驱体结合,然后通过氢转移完成水解;水分子从质子化烷氧基的对面键合并发生水解;第4级水解是H2O从对位驱逐质子化烷氧基,但不能水解完全;水解产物通过"环状模式",由氢键结合成多元环,然后发生氢转移并完成聚合;水解过程的能垒明显低于聚合过程;H+阻止水解产物聚合成环;硅正离子可引发无垒聚合反应,但在能量上并不可行.  相似文献   
89.
双合金法是降低烧结钕铁硼稀土特别是重稀土含量、改善磁体微结构的一种有效方法,其中辅合金的成分及形态起着至关重要的作用。采用粉末冶金的方法,借助SEM和直流磁特性测量系统对辅合金和磁体的微观结构及磁性能进行了分析。结果表明:辅合金粉末尺寸较大时,往往存在大量的中间相能直接进入磁体中形成较大的软磁特性的过渡相,从而损害磁体的磁性能。相反,辅合金粉末尺寸越小,中间相在烧结过程中元素不需要长距离的扩散而达到稳定状态,有利于优化微结构,提高磁体的磁性能。  相似文献   
90.
在模拟镁电解槽中,采用电解法制备出稀土含量<10%的镁稀土合金;研究了熔盐中RECl3和CaCl2的含量、电解温度和阴极电流密度对合金中RE含量和电流效率的影响。并采用循环伏安实验和还原实验研究电解制备镁稀土合金的机制。研究结果表明,电解制备镁稀土合金最佳的工艺条件为:熔盐中RECl3和CaCl2的含量分别为3%和10%(质量分数),电解温度为948 K,阴极电流密度约为8 A.cm-2。其电解过程机制为:阴极上只电解出金属镁,而后金属镁把稀土元素还原出来,形成镁稀土合金。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号