首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10114篇
  免费   1756篇
  国内免费   2004篇
化学   8007篇
晶体学   142篇
力学   517篇
综合类   207篇
数学   1306篇
物理学   3695篇
  2024年   4篇
  2023年   96篇
  2022年   150篇
  2021年   208篇
  2020年   282篇
  2019年   361篇
  2018年   262篇
  2017年   270篇
  2016年   408篇
  2015年   464篇
  2014年   552篇
  2013年   757篇
  2012年   858篇
  2011年   957篇
  2010年   843篇
  2009年   815篇
  2008年   918篇
  2007年   882篇
  2006年   838篇
  2005年   657篇
  2004年   566篇
  2003年   518篇
  2002年   471篇
  2001年   373篇
  2000年   263篇
  1999年   192篇
  1998年   155篇
  1997年   102篇
  1996年   103篇
  1995年   88篇
  1994年   79篇
  1993年   67篇
  1992年   62篇
  1991年   51篇
  1990年   43篇
  1989年   25篇
  1988年   25篇
  1987年   25篇
  1986年   17篇
  1985年   17篇
  1984年   6篇
  1983年   14篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   3篇
  1977年   5篇
  1973年   3篇
  1970年   3篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
There is significant interest in high‐performance materials that can directly and efficiently capture water vapor, particularly from air. Herein, we report a class of novel porous carbon cuboids with unusual ultra‐hydrophilic properties, over which the synergistic effects between surface heterogeneity and micropore architecture is maximized, leading to the best atmospheric water‐capture performance among porous carbons to date, with a water capacity of up to 9.82 mmol g?1 at P/P0=0.2 and 25 °C (20 % relative humidity or 6000 ppm). Benefiting from properties, such as defined morphology, narrow pore size distribution, and high heterogeneity, this series of functional carbons may serve as model materials for fundamental research on carbon chemistry and the advance of new types of materials for water‐vapor capture as well as other applications requiring combined highly hydrophilic surface chemistry, developed hierarchical porosity, and excellent stability.  相似文献   
72.
Bismaleimide (BMI) resin is a high‐performance thermosetting polymer, but its inherent brittleness hinder a broader range of application. Therefore, it has aroused wide concern to improve the toughness of BMI resins without scarification of their thermal stability. This paper reported some studies on modified BMI resins based on diallyl bisphenol A, novel BMI monomers, e.g. 2‐[3‐(4‐maleimidophenoxy)phenyl]‐5‐(4‐maleimidophenyl)‐1,3,4‐oxadiazole (m‐Mioxd) or 2‐[4‐(4‐maleimidophenoxy)phenyl]‐5‐(4‐maleimidophenyl)‐1,3,4‐ oxadiazole (p‐Mioxd) in different proportions (0.87:1, 1:1, 1.2:1; mol/mol). The curing mechanism and kinetics of the copolymerized systems were investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy. Thermogravimetric analysis was applied to study the thermal properties of the cured resins, and the results indicated that the modified resins had excellent thermal stability with high residual weight percentage at 700°C (>50%), temperatures for 5% weight loss around 400°C. Besides, N,N′‐4,4′‐bismaleimidodiphenylmethylene and O,O′‐diallyl bisphenol A resin blends were modified by m‐Mioxd and p‐Mioxd, respectively. We investigated the effects of mole concentration of m‐Mioxd or p‐Mioxd on the curing process, mechanical properties, fracture toughness, and heat resistance of the modified resins. The results revealed that the introduction of m‐Mioxd and p‐Mioxd could improve the impact property of the modified BMI resins. When their proportion was 0.07, the impact strength increased 123.8% and 108.3%, respectively. The novel chain‐extended BMIs could reduce the crosslink density of cured resins and improve the brittleness effectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
73.
The enantioselective conjugated addition of tritylthiol to in situ generated ortho‐quinone methides (o‐QMs) is catalyzed by an acid–base bifunctional squaramide organocatalyst. The transformation proceeds with high yield (up to 99 %) and stereoselectivity (up to 97:3 e.r.) using water as solvent under mild conditions. The catalyst system provides a new strategy for the synthesis of optically active benzyl mercaptans. Control experiments suggested that o‐QMs are generated by the tertiary amine moiety of the squaramide organocatalyst and that the water–oil biphase is crucial for achieving high reactivity and stereoselectivity.  相似文献   
74.
It is highly desirable to develop electroactive organic materials and their derivatives as green alternatives of cathodes for sustainable and cost‐effective lithium‐ion batteries (LIBs) in energy storage fields. Herein, compact two‐dimensional coupled graphene and porous polyaryltriazine‐derived frameworks with tailormade pore structures are fabricated by using various molecular building blocks under ionothermal conditions. The porous nanosheets display nanoscale thickness, high specific surface area, and strong coupling of electroactive polyaryltriazine‐derived frameworks with graphene. All these features make it possible to efficiently depress the dissolution of redox moieties in electrolytes and to boost the electrical conductivity of whole electrode. When employed as a cathode in LIBs, the two‐dimensional porous nanosheets exhibit outstanding cycle stability of 395 mAh g?1 at 5 A g?1 for more than 5100 cycles and excellent rate capability of 135 mAh g?1 at a high current density of 15 A g?1.  相似文献   
75.
Perforalactone A ( 1 ), a new 20S quassinoid with a unique cagelike 2,4‐dioxaadamantane ring system and a migrated side chain, was isolated from the plant Harrisonia perforata together with two biosynthetically related new quassinoids. The structures of these natural products were elucidated by NMR spectroscopy, X‐ray diffraction analysis, computational modeling, and the CD excitation chirality method. The compounds exhibited notable biological properties, including insecticidal activity against Aphis medicaginis Koch and antagonist activity at the nicotinic acetylcholine receptor of Drosophila melanogaster. The structural features of these compounds may be related to their promising biological characteristics. Their biosynthesis and an alternative origin of quassinoid‐type natural products are also discussed.  相似文献   
76.
This paper reports a headspace analysis technique for the determination of products, i.e., cyclohexanone (CE) and cyclohexanol (CL), of phenol hydrogenation in a supercritical water reaction system (SWRS) with water removal by hydrate formation. An addition of anhydrous calcium chloride leads to water absorption resulting in crystal water; thus, the samples can be quantitatively measured without the influence of water. After achieving equilibrium at 150°C and maintaining it for 5 min, the obtained results showed a relative standard deviation of less than 5.3% and the recovery ranged from 93% to 104%. The presented method is simple and accurate for the analysis of CL, CE and phenol in samples from phenol conversion in SWRS.  相似文献   
77.
张薇  丁永萍  张宇  陈霞  宋溪明 《化学通报》2015,78(4):330-336
本文首次将一系列含有不同酸性咪唑阳离子和不同杂多酸阴离子的杂多酸离子液体[C4mim]3PW12O40、[COOH-Cmim] 3PW12O40、[SO3H-C3mim]3PW12O40、[SO3H-C3mim]3PMo12O40和[SO3H-C3mim]4 SiW12O40作为催化剂,乙腈为萃取剂,H2O2为氧化剂,用于催化含二苯并噻吩、苯并噻吩及噻吩模型油的萃取氧化脱硫研究中.实验结果显示,杂多酸离子液体催化燃油脱硫性能不仅与阳离子的酸性强弱有关,而且与阴离子结构密切相关.阳离子的催化活性顺序为:[SO3H-C3mim]+>[COOH-Cmim]+>[C4mim]+;阴离子的催化活性顺序为PW12O403-> PMo12O403-> SiW12O404-.其中[SO3H-C3 mim]3 PW12O40催化活性最高,在60℃反应40min的条件下,二苯并噻吩的转化率约为100%,催化不同硫化物的转化率为:二苯并噻吩>苯并噻吩>噻吩.此外,该杂多酸离子液体循环使用5次催化活性仅略有下降.  相似文献   
78.
Herein we report a microfluidics method that enriches cancer stem cells (CSCs) or tumor‐initiating cells on the basis of cell adhesion properties. In our on‐chip enrichment system, cancer cells were driven by hydrodynamic forces to flow through microchannels coated with basement membrane extract. Highly adhesive cells were captured by the functionalized microchannels, and less adhesive cells were collected from the outlets. Two heterogeneous breast cancer cell lines (SUM‐149 and SUM‐159) were successfully separated into enriched subpopulations according to their adhesive capacity, and the enrichment of the cancer stem cells was confirmed by flow cytometry biomarker analysis and tumor‐formation assays. Our findings show that the less adhesive phenotype is associated with a higher percentage of CSCs, higher cancer‐cell motility, and higher resistance to chemotherapeutic drugs.  相似文献   
79.
Biological function arises by the assembly of individual biomolecular modules into large aggregations or highly complex architectures. A similar strategy is adopted in supramolecular chemistry to assemble complex and highly ordered structures with advanced functions from simple components. Here we report a series of diamond‐like supramolecular frameworks featuring mesoporous cavities, which are assembled from metal‐imidazolate coordination cages and various anions. Small components (metal ions, amines, aldehydes, and anions) are assembled into the hierarchical complex structures through multiple interactions including covalent bonds, dative bonds, and weak C? H???X (X=O, F, and π) hydrogen bonds. The mesoporous cavities are large enough to trap organic dye molecules, coordination cages, and vitamin B12. The study is expected to inspire new types of crystalline supramolecular framework materials based on coordination motifs and inorganic ions.  相似文献   
80.
Lanthanide‐doped upconversion nanoparticles (UCNPs) have shown great promise in versatile bioapplications. For the first time, organosilica‐shelled β‐NaLuF4:Gd/Yb/Er nanoprobes with a rattle structure have been designed for dual‐modal imaging and photodynamic therapy (PDT). Benefiting from the unique rattle structure and aromatic framework, these nanoprobes are endowed with a high loading capacity and the disaggregation effect of photosensitizers. After loading of β‐carboxyphthalocyanine zinc or rose Bengal into the nanoprobes, we achieved higher energy transfer efficiency from UCNPs to photosensitizers as compared to those with conventional core–shell structure or with pure‐silica shell, which facilitates a large production of singlet oxygen and thus an enhanced PDT efficacy. We demonstrated the use of these nanoprobes in proof‐of‐concept X‐ray computed tomography (CT) and UC imaging, thus revealing the great potential of this multifunctional material as an excellent nanoplatform for cancer theranostics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号