首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10114篇
  免费   1756篇
  国内免费   2004篇
化学   8007篇
晶体学   142篇
力学   517篇
综合类   207篇
数学   1306篇
物理学   3695篇
  2024年   4篇
  2023年   96篇
  2022年   150篇
  2021年   208篇
  2020年   282篇
  2019年   361篇
  2018年   262篇
  2017年   270篇
  2016年   408篇
  2015年   464篇
  2014年   552篇
  2013年   757篇
  2012年   858篇
  2011年   957篇
  2010年   843篇
  2009年   815篇
  2008年   918篇
  2007年   882篇
  2006年   838篇
  2005年   657篇
  2004年   566篇
  2003年   518篇
  2002年   471篇
  2001年   373篇
  2000年   263篇
  1999年   192篇
  1998年   155篇
  1997年   102篇
  1996年   103篇
  1995年   88篇
  1994年   79篇
  1993年   67篇
  1992年   62篇
  1991年   51篇
  1990年   43篇
  1989年   25篇
  1988年   25篇
  1987年   25篇
  1986年   17篇
  1985年   17篇
  1984年   6篇
  1983年   14篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   3篇
  1977年   5篇
  1973年   3篇
  1970年   3篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Solid-state lithium batteries are promising and safe energy storage devices for mobile electronics and electric vehicles. In this work, we report a facile in situ polymerization of 1,3-dioxolane electrolytes to fabricate integrated solid-state lithium batteries. The in situ polymerization and formation of solid-state dioxolane electrolytes on interconnected carbon nanotubes (CNTs) and active materials is the key to realizing a high-performance battery with excellent interfacial contact among CNTs, active materials and electrolytes. Therefore, the electrodes could be tightly integrated into batteries through the CNTs and electrolyte. Electrons/ions enable full access to active materials in the whole electrode. Electrodes with a low resistance of 4.5 Ω □−1 and high lithium-ion diffusion efficiency of 2.5×10−11 cm2 s−1 can significantly improve the electrochemical kinetics. Subsequently, the batteries demonstrated high energy density, amazing charge/discharge rate and long cycle life.  相似文献   
52.
Full understanding to the origin of the catalytic performance of a supported nanocatalyst from the points of view of both the active component and support is significant for the achievement of high performance. Herein, based on a model electrocatalyst of single-iridium-atom-doped iron (Fe)-based layered double hydroxides (LDH) for oxygen evolution reaction (OER), we reveal the first completed origin of the catalytic performance of such supported nanocatalysts. Specially, besides the activity enhancement of Ir sites by LDH support, the stability of surface Fe sites is enhanced by doped Ir sites: DFT calculation shows that the Ir sites can reduce the activity and enhance the stability of the nearby Fe sites; while further finite element simulations indicate, the stability enhancement of distant Fe sites could be attributed to the much low concentration of OER reactant (hydroxyl ions, OH) around them induced by the much fast consumption of OH on highly active Ir sites. These new findings about the interaction between the main active components and supports are applicable in principle to other heterogeneous nanocatalysts and provide a completed understanding to the catalytic performance of heterogeneous nanocatalysts.  相似文献   
53.
Replacing widely used organic liquid electrolytes with solid-state electrolytes (SSEs) could effectively solve the safety issues in sodium-ion batteries. Efforts on seeking novel solid-state electrolytes have been continued for decades. However, issues about SSEs still exist, such as low ionic conductivity at ambient temperature, difficulty in manufacturing, low electrochemical stability, poor compatibility with electrodes, etc. Here, sodium carbazolide (Na-CZ) and its THF-coordinated derivatives are rationally fabricated as Na+ conductors, and two of their crystal structures are successfully solved. Among these materials, THF-coordinated complexes exhibit fast Na+ conductivities, i.e., 1.20×10−4 S cm−1 and 1.95×10−3 S cm−1 at 90 °C for Na-CZ-1THF and Na-CZ-2THF, respectively, which are among the top Na+ conductors under the same condition. Furthermore, stable Na plating/stripping is observed even over 400 h cycling, showing outstanding interfacial stability and compatibility against Na electrode. More advantages such as ease of synthesis, low-cost, and cold pressing for molding can be obtained. In situ NMR results revealed that the evaporation of THF may play an essential role in the Na+ migration, where the movement of THF creates defects/vacancies and facilitates the migration of Na+.  相似文献   
54.
Eco-friendly lead-free organic–inorganic manganese halides (OIMHs) have attracted considerable attention in various optoelectronic applications because of their superior optical properties and flexible solution processibility. Herein, we report a novel pseudo-2D layered OIMH (MTP)2MnBr4 (MTP: methyltriphenylphosphonium), which exhibits intense green emission under UV/blue or X-ray excitation, with a near-unity photoluminescence quantum yield, high resistance to thermal quenching (I150 °C=84.1 %) and good photochemical stability. These features enable (MTP)2MnBr4 as an efficient green phosphor for blue-converted white light-emitting diodes, demonstrating a commercial-level luminous efficiency of 101 lm W−1 and a wide color gamut of 116 % NTSC. Moreover, these (MTP)2MnBr4 crystals showcase outstanding X-ray scintillation properties, delivering a light yield of 67000 photon MeV−1, a detection limit of 82.4 nGy s−1, and a competitive spatial resolution of 6.2 lp mm−1 for X-ray imaging. This work presents a new avenue for the exploration of eco-friendly luminescent OIMHs towards multifunctional light-emitting applications.  相似文献   
55.
The phototoxicity of photosensitizers (PSs) pre and post photodynamic therapy (PDT), and the hypoxic tumor microenvironment are two major problems limiting the application of PDT. While activatable PSs can successfully address the PS phototoxicity pre PDT, and type I PS can generate reactive oxygen species (ROS) effectively in hypoxic environment, very limited approaches are available for addressing the phototoxicity post PDT. There is virtually no solution available to address all these issues using a single design. Herein, we propose a proof-of-concept on-demand switchable photosensitizer with quenched photosensitization pre and post PDT, which could be activated only in tumor hypoxic environment. Particularly, a hypoxia-normoxia cycling responsive type I PS TPFN-AzoCF3 was designed to demonstrate the concept, which was further formulated into TPFN-AzoCF3 nanoparticles (NPs) using DSPE-PEG-2000 as the encapsulation matrix. The NPs could be activated only in hypoxic tumors to generate type I ROS during PDT treatment, but remain non-toxic in normal tissues, pre or after PDT, thus minimizing side effects and improving the therapeutic effect. With promising results in in vitro and in vivo tumor treatment, this presented strategy will pave the way for the design of more on-demand switchable photosensitizers with minimized side effects in the future.  相似文献   
56.
Nanoplastics are recently recognized as neurotoxic factors for the nervous systems. However, whether and how they affect vesicle chemistry (i.e., vesicular catecholamine content and exocytosis) remains unclear. This study offers the first direct evidence for the nanoplastics-induced neurotoxicity by single-vesicle electrochemistry. We observe the cellular uptake of polystyrene (PS) nanoplastics into model neuronal cells and mouse primary neurons, leading to cell viability loss depending on nanoplastics exposure time and concentration. By using single-vesicle electrochemistry, we find the reductions in the vesicular catecholamine content, the frequency of stimulated exocytotic spikes, the neurotransmitter release amount of single exocytotic event, and the membrane-vesicle fusion pore opening-closing speed. Mechanistic investigations suggest that PS nanoplastics can cause disruption of filamentous actin (F-actin) assemblies at cytomembrane zones and change the kinetic patterns of vesicle exocytosis. Our finding shapes the first quantitative picture of neurotoxicity induced by high-concentration nanoplastics exposure at a single-cell level.  相似文献   
57.
A photoinduced synthesis of β-keto thiosulfone/β-keto selenosulfone by the reaction of α-bromoacetophenone with thiosulfonate/selenosulfonate under metal-free and visible light irradiation conditions is developed. Two C−S bonds or one C−S bond and one C−Se bond were constructed simultaneously.  相似文献   
58.
Total syntheses of the title marine natural products have been achieved and so confirming the structures originally assigned to them. Upon subjecting agesasine A and its corresponding ethyl ester to Mitsunobu conditions, a 1,5-cyclodehydration reaction takes place to give 2-oxazolines. In contrast, on subjecting agesasine B to the same Mitsunobu conditions, a simple dehydration reaction occurs to give the corresponding acrylate. A total synthesis of longamide E was achieved by engaging a 1,2-disubstituted pyrrole in a lactam-forming reaction and this was followed by a two-fold and fully regio-controlled bromination reaction. A distinctly different and possibly biomimetic route was used to synthesize, via the open-chain natural product nakamurine B, longamide B and its methyl ester. Preliminary biological evaluations of the title alkaloids and various analogues against a small human cancer cell line panel reveals cytotoxic properties that vary significantly with structure.  相似文献   
59.
As a famous traditional Chinese formula, Danshen Decoction has the potential to relieve the pain of pulmonary arterial hypertension patients, however, the functional components remain unknown. Herein, we reported a method to screen the functional components in Danshen Decoction targeting endothelin receptor A, an accepted target for the treatment of the disease. The receptor was functionalized on the macroporous silica gel through an epidermal growth factor receptor fusion tag and its covalent inhibitor. Using the affinity gel as the stationary phase, the bioactive compound was identified as salvianolic acid B by mass spectrometry. The binding kinetic parameter (dissociation rate constants kd) of salvianolic acid B with the receptor was determined via peak profiling. Using the specific ligands of the receptor as probes, the binding configuration prediction of salvianolic acid B with the receptor was performed by molecular dynamics simulation. Our results indicated that salvianolic acid B is a potential bioactive compound in Danshen Decoction targeting the receptor. This work showed that receptor chromatography in combination with molecular dynamics simulation is applicable to predicting the binding kinetics and configuration of a ligand to a receptor, providing crucial insight for the rational design of drugs that recognize functional proteins.  相似文献   
60.
Here, an imine-linked-based spherical covalent organic framework (COF) was prepared at room temperature. The as-synthesized spherical COF served as an adsorbent in dispersive solid-phase extraction (dSPE), by its virtue of great surface area (1542.68 m2/g), regular distribution of pore size (2.95 nm), and excellent stability. Therefore, a simple and high-efficiency dispersive solid phase extraction method based on a spherical COF coupled with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established to determine aryl organophosphate esters in biological samples. This approach displayed favorable linearity in the range of 10.0–1000.0 ng/L (r > 0.9989), a high signal enhancement factor (58.8–181.8 folds) with low limits of detection (0.3–3.3 ng/L). Moreover, it could effectively eliminate complex matrix interference to accurately extract seven aryl organophosphate esters from mouse serum and tissue samples with spiked recoveries of 82.0%–117.4%. The as-synthesized spherical COF has been successfully applied in sample preparation. The dSPE-HPLC-MS/MS method based on a spherical COF has potential application to study the pollutants' metabolism in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号