首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lanthanide‐doped upconversion nanoparticles (UCNPs) have shown great promise in bioapplications. Exploring new host materials to realize efficient upconversion luminescence (UCL) output is a goal of general concern. Herein, we develop a unique strategy for the synthesis of novel LiLuF4:Ln3+ core/shell UCNPs with typically high absolute upconversion quantum yields of 5.0 % and 7.6 % for Er3+ and Tm3+, respectively. Based on our customized UCL biodetection system, we demonstrate for the first time the application of LiLuF4:Ln3+ core/shell UCNPs as sensitive UCL bioprobes for the detection of an important disease marker β subunit of human chorionic gonadotropin (β‐hCG) with a detection limit of 3.8 ng mL−1, which is comparable to the β‐hCG level in the serum of normal humans. Furthermore, we use these UCNPs in proof‐of‐concept computed tomography imaging and UCL imaging of cancer cells, thus revealing the great potential of LiLuF4:Ln3+ UCNPs as efficient nano‐bioprobes in disease diagnosis.  相似文献   

2.
Upconverting nanoparticles (UCNPs) with fascinating properties hold great potential as nanotransducers for solving the problems that traditional photodynamic therapy (PDT) has been facing. In this report, by using well‐selected bifunctional gadolinium (Gd)‐ion‐doped UCNPs and water‐soluble methylene blue (MB) combined with the water‐in‐oil reverse microemulsion technique, we have succeeded in developing a new kind of UCNP/MB‐based PDT drug, NaYF4:Er/Yb/Gd@SiO2(MB), with a particle diameter less than 50 nm. Great efforts have been made to investigate the drug‐formation mechanism and provide detailed physical and photochemical characterizations and the potential structure optimization of the as‐designed PDT drug. We envision that such a PDT drug will become a potential theranostic nanomedicine for future near‐infrared laser‐triggered photodynamic therapy and simultaneous magnetic/optical bimodal imaging.  相似文献   

3.
Nanocarriers are employed to deliver photosensitizers for photodynamic therapy (PDT) through the enhanced penetration and retention effect, but disadvantages including the premature leakage and non‐selective release of photosensitizers still exist. Herein, we report a 1O2‐responsive block copolymer (POEGMA‐b‐P(MAA‐co‐VSPpaMA) to enhance PDT via the controllable release of photosensitizers. Once nanoparticles formed by the block copolymer have accumulated in a tumor and have been taken up by cancer cells, pyropheophorbide a (Ppa) could be controllably released by singlet oxygen (1O2) generated by light irradiation, enhancing the photosensitization. This was demonstrated by confocal laser scanning microscopy and in vivo fluorescence imaging. The 1O2‐responsiveness of POEGMA‐b‐P(MAA‐co‐VSPpaMA) block copolymer enabled the realization of self‐amplified photodynamic therapy by the regulation of Ppa release using NIR illumination. This may provide a new insight into the design of precise PDT.  相似文献   

4.
Two‐photon photodynamic therapy (2P‐PDT) is a promising noninvasive treatment of cancers and other diseases with three‐dimensional selectivity and deep penetration. However, clinical applications of 2P‐PDT are limited by small two‐photon absorption (TPA) cross sections of traditional photosensitizers. The development of folate receptor targeted nano‐photosensitizers based on conjugated polymers is described. In these nano‐photosensitizers, poly{9,9‐bis[6′′‐(bromohexyl)fluorene‐2,7‐ylenevinylene]‐coalt‐1,4‐(2,5‐dicyanophenylene)}, which is a conjugated polymer with a large TPA cross section, acts as a two‐photon light‐harvesting material to significantly enhance the two‐photon properties of the doped photosensitizer tetraphenylporphyrin (TPP) through energy transfer. These nanoparticles displayed up to 1020‐fold enhancement in two‐photon excitation emission and about 870‐fold enhancement in the two‐photon‐induced singlet oxygen generation capability of TPP. Surface‐functionalized folic acid groups make these nanoparticles highly selective in targeting and killing KB cancer cells over NIH/3T3 normal cells. The 2P‐PDT activity of these nanoparticles was significantly improved, potentially up to about 1000 times, as implied by the enhancement factors of two‐photon excitation emission and singlet oxygen generation. These nanoparticles could act as novel two‐photon nano‐photosensitizers with combined advantages of low dark cytotoxicity, targeted 2P‐PDT with high selectivity, and simultaneous two‐photon fluorescence imaging capability; these are all required for ideal two‐photon photosensitizers.  相似文献   

5.
Phthalocyanine photosensitizers are effective in anticancer photodynamic therapy (PDT) but suffer from limited solubility, limited cellular uptake and limited selectivity for cancer cells. To improve these characteristics, we synthesized isopropylidene‐protected and partially deprotected tetra β‐glycosylated zinc (II) phthalocyanines and compared their uptake and accumulation kinetics, subcellular localization, in vitro photocytotoxicity and reactive oxygen species generation with those of disulfonated aluminum phthalocyanine. In MCF‐7 cancer cells, one of the compounds, zinc phthalocyanine {4}, demonstrated 10‐fold higher uptake, 5‐fold greater PDT‐induced cellular reactive oxygen species concentration and 2‐fold greater phototoxicity than equimolar (9 μm ) disulfonated aluminum phthalocyanine. Thus, isopropylidene‐protected β‐glycosylation of phthalocyanines provides a simple method of improving the efficacy of PDT.  相似文献   

6.
Owing to their unique, nanoscale related optical properties, nanostructures assembled from molecular photosensitizers (PSs) have interesting applications in phototheranostics. However, most nanostructured PS assemblies are super‐quenched, thus, preventing their use in photodynamic therapy (PDT). Although some of these materials undergo stimuli‐responsive disassembly, which leads to partial recovery of PDT activity, their therapeutic potentials are unsatisfactory owing to a limited ability to promote generation reactive oxygen species (ROS), especially via type I photoreactions (i.e., not by 1O2 generation). Herein we demonstrate that a new, nanostructured phthalocyanine assembly, NanoPcA, has the ability to promote highly efficient ROS generation via the type I mechanism. The results of antibacterial studies demonstrate that NanoPcA has potential PDT applications.  相似文献   

7.
An efficient and facile one‐pot method was developed to fabricate noble‐metal nanoparticles (NMNs; Au, Pt, PdO and Ag) that were encapsulated within hollow silica nanospheres (HSNs; NMNs@HSNs) with a size of about 100 nm. NMNs@HSNs were afforded in very high yields between 85–95 %. Poly(acrylic acid) (PAA) polyelectrolyte played a dual role in the fabrication process, both as a core template of the HSNs and as a captor of the NMNs through coordination interactions between the COO? groups on the ammonium polyacrylate (APA) polyanionic chains and the empty orbital of the Au atom. The amount of Au loading in Au@HSNs was easily regulated by varying the volume of the HAuCl4 solution added. In addition, these rattle‐type particles were successfully applied in the catalytic reduction of 2‐nitroaniline (2‐NA) as a model reaction, thus indicating that the micropores in the silica shell could achieve the transport of small species—with a size smaller than that of the micropores—into the cavity. Thus, these fabricated NMNs@HSNs have promising applications in catalysis.  相似文献   

8.
Photodynamic therapy (PDT) has long been shown to be a powerful therapeutic modality for cancer. However, PDT is undiversified and has become stereotyped in recent years. Exploration of distinctive PDT methods is thus highly in demand but remains a severe challenge. Herein, an unprecedented 1+1+1>3 synergistic strategy is proposed and validated for the first time. Three homologous luminogens with aggregation‐induced emission (AIE) characteristics were rationally designed based on a simple backbone. Through slight structural tuning, these far‐red/near‐infrared AIE luminogens are capable of specifically anchoring to mitochondria, cell membrane, and lysosome, and effectively generating reactive oxygen species (ROS). Notably, biological studies demonstrated combined usage of three AIE photosensitizers gives multiple ROS sources simultaneously derived from several organelles, which gives superior therapeutic effect than that from a single organelle at the same photosensitizers concentration. This strategy is conceptually and operationally simple, providing an innovative approach and renewed awareness of improving therapeutic effect through three‐pronged PDT.  相似文献   

9.
Malignant tumors remain a major health burden throughout the world and effective therapeutic strategies are urgently needed. Herein, we report the synthesis of upconverting nanoparticles with a mesoporous TiO2 (mTiO2) shell for near‐infrared (NIR)‐triggered drug delivery and synergistic targeted cancer therapy. The NaGdF4:Yb,Tm could convert NIR light to UV light, which activated the mTiO2 to produce reactive oxygen species for photodynamic therapy (PDT). Due to the large surface area and porous structure, the mTiO2 shell endowed the nanoplatform with another functionality of anticancer drug loading for chemotherapy. The hyaluronic acid modified on the surface not only promised controlled drug release but also conferred targeted ability of the system toward cluster determinant 44 overexpressed cancer cells. More importantly, cytotoxicity experiments demonstrated that combined therapy mediated the highest rate of death of breast carcinoma cells compared with that of single chemotherapy or PDT.  相似文献   

10.
Lanthanide‐doped upconversion nanoparticles (UCNPs) have attracted considerable attention for their application in biomedicine. Here, silica‐coated NaGdF4:Yb,Er/NaGdF4 nanoparticles with a tetrasubstituted carboxy aluminum phthalocyanine (AlC4Pc) photosensitizer covalently incorporated inside the silica shells were prepared and applied in the photodynamic therapy (PDT) and magnetic resonance imaging (MRI) of cancer cells. These UCNP@SiO2(AlC4Pc) nanoparticles were uniform in size, stable against photosensitizer leaching, and highly efficient in photogenerating cytotoxic singlet oxygen under near‐infrared (NIR) light. In vitro studies indicated that these nanoparticles could effectively kill cancer cells upon NIR irradiation. Moreover, the nanoparticles also demonstrated good MR contrast, both in aqueous solution and inside cells. This is the first time that NaGdF4:Yb,Er/NaGdF4 upconversion‐nanocrystal‐based multifunctional nanomaterials have been synthesized and applied in PDT. Our results show that these multifunctional nanoparticles are very promising for applications in versatile imaging diagnosis and as a therapy tool in biomedical engineering.  相似文献   

11.
《中国化学》2018,36(1):25-30
Multimodal imaging techniques have been demonstrated to be greatly advantageous in achieving accurate diagnosis and gained increasing attention in recent decades. Herein, we present a new strategy to integrate the complementary modalities of 19F magnetic resonance imaging (19F MRI) and fluorescence imaging (FI) into a polymer nanoprobe composed of hydrophobic fluorescent organic core and hydrophilic fluorinated polymer shell. The alkyne‐terminated fluorinated copolymer (Pn) of 2,2,2‐trifluoroethyl acrylate (TFEA) and poly(ethylene glycol) methyl ether acrylate (PEGA) was first prepared via atom transfer radical polymerization (ATRP). The PEGA plays an important role in both improving 19F signal and modulating the hydrophilicity of Pn. The alkynyl tail in Pn is readily conjugated with azide modified tetra‐phenylethylene (TPE) through click chemistry to form azo polymer (TPE‐azo‐Pn). The core‐shell nanoprobes (TPE‐P3N) with an average particle size of 57.2 ± 8.8 nm are obtained via self‐assembly with ultrasonication in aqueous solution. These nanoprobes demonstrate high water stability, good biocompatibility, strong fluorescence and good 19F MRI performance, which present great potentials for simultaneous fluorescence imaging and 19F–MR imaging.  相似文献   

12.
Gd3+‐aggregated gold nanoclusters (AuNCs) encapsulated by silica shell (Gd3+‐A‐AuNCs@SiO2 NPs) were strategically designed and prepared. The as‐prepared nanoparticles exhibit aggregation‐enhanced fluorescence (AEF), with an intensity that is up to 3.8 times that of discrete AuNCs. The clusters served as novel nanoprobes for in vitro and in vivo multimodal (fluorescence, magnetic resonance, and computed X‐ray tomography) cancer imaging  相似文献   

13.
Traditional photosensitizers (PSs) show reduced singlet oxygen (1O2) production and quenched fluorescence upon aggregation in aqueous media, which greatly affect their efficiency in photodynamic therapy (PDT). Meanwhile, non‐targeting PSs generally yield low efficiency in antibacterial performance due to their short lifetimes and small effective working radii. Herein, a water‐dispersible membrane anchor (TBD‐anchor) PS with aggregation‐induced emission is designed and synthesized to generate 1O2 on the bacterial membrane. TBD‐anchor showed efficient antibacterial performance towards both Gram‐negative (Escherichia coli) and Gram‐positive bacteria (Staphylococcus aureus). Over 99.8 % killing efficiency was obtained for methicillin‐resistant S. aureus (MRSA) when they were exposed to 0.8 μm of TBD‐anchor at a low white light dose (25 mW cm?2) for 10 minutes. TBD‐anchor thus shows great promise as an effective antimicrobial agent to combat the menace of multidrug‐resistant bacteria.  相似文献   

14.
Photoluminescence is one of the most sensitive techniques for fingerprint detection, but it also suffers from background fluorescence and selectivity at the expense of generality. The method described herein integrates the advantages of near‐infrared‐light‐mediated imaging and molecular recognition. In principle, upconversion nanoparticles (UCNPs) functionalized with a lysozyme‐binding aptamer were used to detect fingerprints through recognizing lysozyme in the fingerprint ridges. UCNPs possess the ability to suppress background fluorescence and make it possible for fingerprint imaging on problematic surfaces. Lysozyme, a universal compound in fingerprints, was chosen as the target, thus simultaneously meeting the selectivity and generality criteria in photoluminescence approaches. Fingerprints on different surfaces and from different people were detected successfully. This strategy was used to detect fingerprints with cocaine powder by using UCNPs functionalized with a cocaine‐binding aptamer.  相似文献   

15.
Quantum dots (QDs) hold great promise for the molecular imaging of cancer because of their superior optical properties. Although cell‐surface biomarkers can be readily imaged with QDs, non‐invasive live‐cell imaging of critical intracellular cancer markers with QDs is a great challenge because of the difficulties in the automatic delivery of QD probes to the cytosol and the ambiguity of intracellular targeting signals. Herein, we report a new type of DNA‐templated heterobivalent QD nanoprobes with the ability to target and image two spatially isolated cancer markers (nucleolin and mRNA) present on the cell surface and in the cell cytosol. Bypassing endolysosomal sequestration, this type of QD nanoprobes undergo macropinocytosis following the nucleolin targeting and then translocate to the cytosol for mRNA targeting. Fluorescence resonance energy transfer (FRET) based confocal microscopy enables unambiguous signal deconvolution of mRNA‐targeted QD nanoprobes inside cancer cells.  相似文献   

16.
Upconverting nanoparticles (UCNPs) with fascinating properties hold great potential as nanotransducers for solving the problems that traditional photodynamic therapy (PDT) has been facing. In this report, by using well-selected bifunctional gadolinium (Gd)-ion-doped UCNPs and water-soluble methylene blue (MB) combined with the water-in-oil reverse microemulsion technique, we have succeeded in developing a new kind of UCNP/MB-based PDT drug, NaYF(4):Er/Yb/Gd@SiO(2)(MB), with a particle diameter less than 50 nm. Great efforts have been made to investigate the drug-formation mechanism and provide detailed physical and photochemical characterizations and the potential structure optimization of the as-designed PDT drug. We envision that such a PDT drug will become a potential theranostic nanomedicine for future near-infrared laser-triggered photodynamic therapy and simultaneous magnetic/optical bimodal imaging.  相似文献   

17.
Stimulated emission depletion (STED) microscopy enables ultrastructural imaging of biological samples with high spatiotemporal resolution. STED nanoprobes based on fluorescent organosilica nanohybrids featuring sub‐2 nm size and near‐unity quantum yield are presented. The spin–orbit coupling (SOC) of heavy‐atom‐rich organic fluorophores is mitigated through a silane‐molecule‐mediated condensation/dehalogenation process, resulting in bright fluorescent organosilica nanohybrids with multiple emitters in one hybrid nanodot. When harnessed as STED nanoprobes, these fluorescent nanohybrids show intense photoluminescence, high biocompatibility, and long‐term photostability. Taking advantage of the low‐power excitation (0.5 μW), prolonged singlet‐state lifetime, and negligible depletion‐induced re‐excitation, these STED nanohybrids present high depletion efficiency (>96 %), extremely low saturation intensity (0.54 mW, ca. 0.188 MW cm?2), and ultra‐high lateral resolution (ca. λem/28).  相似文献   

18.
Novel β‐NaGdF4/Na(Gd,Yb)F4:Er/NaYF4:Yb/NaNdF4:Yb core/shell 1/shell 2/shell 3 (C/S1/S2/S3) multi‐shell nanocrystals (NCs) have been synthesized and used as probes for in vivo imaging. They can be excited by near‐infrared (800 nm) radiation and emit short‐wavelength infrared (SWIR, 1525 nm) radiation. Excitation at 800 nm falls into the “biological transparency window”, which features low absorption by water and low heat generation and is considered to be the ideal excitation wavelength with the least impact on biological tissues. After coating with phospholipids, the water‐soluble NCs showed good biocompatibility and low toxicity. With efficient SWIR emission at 1525 nm, the probe is detectable in tissues at depths of up to 18 mm with a low detection threshold concentration (5 nM for the stomach of nude mice and 100 nM for the stomach of SD rats). These results highlight the potential of the probe for the in vivo monitoring of areas that are otherwise difficult to analyze.  相似文献   

19.
A new method is presented for preparing gram amounts of very small core/shell upconversion nanocrystals without additional codoping of the particles. First, ca. 5 nm β‐NaYF4:Yb,Er core particles are formed by the reaction of sodium oleate, rare‐earth oleate, and ammonium fluoride, thereby making use of the fact that a high ratio of sodium to rare‐earth ions promotes the nucleation of a large number of β‐phase seeds. Thereafter, a 2 nm thick NaYF4 shell is formed by using 3–4 nm particles of α‐NaYF4 as a single‐source precursor for the β‐phase shell material. In contrast to the core particles, however, these α‐phase particles are prepared with a low ratio of sodium to rare‐earth ions, which efficiently suppresses an undesired nucleation of β‐NaYF4 particles during shell growth.  相似文献   

20.
Developing multicolor upconversion nanoparticles (UCNPs) with the capability of regulating their emission wavelengths in the UV to visible range in response to external stimuli can offer more dynamic platforms for applications in high‐resolution bioimaging, multicolor barcoding, and driving multiple important photochemical reactions, such as photoswitching. Here, we have rationally designed single‐crystal core–shell‐structured UCNPs which are capable of orthogonal UV and visible emissions in response to two distinct NIR excitations at 808 and 980 nm. The orthogonal excitation–emission properties of such UCNPs, as well as their ability to utilize low‐power excitation, which attenuates any local heating from the lasers, endows the UCNPs with great potential for applications in materials and biological settings. As a proof of concept, the use of this UCNP for the efficient regulation of the two‐way photoswitching of spiropyran by using dual wavelengths of NIR irradiation has been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号