首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8277篇
  免费   1270篇
  国内免费   1113篇
化学   1263篇
晶体学   49篇
力学   2074篇
综合类   245篇
数学   3948篇
物理学   3081篇
  2024年   25篇
  2023年   139篇
  2022年   151篇
  2021年   139篇
  2020年   132篇
  2019年   150篇
  2018年   119篇
  2017年   170篇
  2016年   202篇
  2015年   311篇
  2014年   560篇
  2013年   384篇
  2012年   620篇
  2011年   617篇
  2010年   578篇
  2009年   534篇
  2008年   746篇
  2007年   473篇
  2006年   470篇
  2005年   450篇
  2004年   409篇
  2003年   401篇
  2002年   351篇
  2001年   314篇
  2000年   240篇
  1999年   238篇
  1998年   203篇
  1997年   217篇
  1996年   204篇
  1995年   197篇
  1994年   178篇
  1993年   139篇
  1992年   134篇
  1991年   127篇
  1990年   116篇
  1989年   123篇
  1988年   38篇
  1987年   33篇
  1986年   8篇
  1985年   4篇
  1984年   3篇
  1983年   5篇
  1982年   6篇
  1980年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
31.
喷墨打印工艺具有无接触、材料利用率高、成本较低,以及可图案化等优势,是制备全彩量子点显示的关键技术.迁移率高、材料稳定性好的ZnO量子点薄膜作为电子传输层一直是制备量子点发光二极管的重要材料.然而,在ZnO薄膜干燥的过程中,存在ZnO量子点团聚的问题,破坏了ZnO薄膜的形貌和厚度均一性,进而劣化了器件的发光性能.通常在ZnO量子点合成后需要加入配体乙醇胺来将其稳定分散.但是研究发现,当ZnO量子点在空气中干燥成膜时,其与乙醇胺配体连接的化学键容易断裂,使ZnO量子点之间发生聚集.同时氧含量随着时间不断上升,表明外界的水氧结合在薄膜表面,进一步加剧了ZnO量子点之间的团聚.通过使用结合更加紧密的乙二胺四乙酸配体可有效地改善该现象,制备出形貌良好、厚度均匀的ZnO薄膜,进而制备出高效稳定的喷墨打印量子点发光二极管.  相似文献   
32.
用计算量子场论方法研究了非线性啁啾频率对势阱中正负电子对产生的增强效应。研究了由静态势阱和动态势阱组成的组合势阱中产生的正负电子对的密度、产额和能谱等性质随着啁啾参数的变化,分析了组合势阱的频谱和瞬时束缚态。发现非线性啁啾效应对低频区域比较敏感,与固定频率情况相比可以使粒子数增加2~3倍。与组合势阱相比,非线性啁啾效应对单个振荡势阱更敏感。在低频下单个振荡的势阱中正负电子对产额可提高多个数量级。这是因为在低频下单个振荡的势阱中,主要通过量子隧穿过程产生的正负电子对数目非常低。非线性啁啾效应增加了高频场成分,提高了多光子过程和动力学辅助机制。由于高频抑制作用,所以非线性啁啾效应对高频区域粒子的增量不大,甚至会抑制正负电子对的产生。  相似文献   
33.
为探究围压条件下伟晶辉长岩的能量释放与破坏模式的关系,利用霍普金森压杆和LS-DYNA数值模拟软件对伟晶辉长岩开展了不同围压和不同冲击速度下的动态力学性能测试,分析其在不同围压和应变率下的能量释放特征及破坏规律。结果表明:高围压下,试样无明显塑性变形阶段,且围压状态对高应变率下的动态抗压强度有抑制作用,当冲击气压高于0.4 MPa时,动态抗压强度的增长趋势放缓;应变率和围压对伟晶辉长岩的能量与破坏模式有显著影响。随着围压的升高,试样的反射能占比增大,而透射能占比减小;能耗密度随应变率的增加而增大,当应变率为95 s-1时(对应的冲击气压为0.4 MPa)出现拐点,同时高围压下的能耗密度大于低围压下的能耗密度。对于处于围压下的试样,其破坏断面多带有一定的角度,通过LS-DYNA有限元软件模拟了试样在围压下的动态破坏过程,发现中低围压下试样多呈剪切破坏,而高围压下试样有多条剪切裂纹发育贯通,呈复合破坏模式。  相似文献   
34.
本文利用六面顶压机,在5.6 GPa, 1250—1450℃的高压高温条件下,分别选用FeNiCo和NiMnCo触媒合金开展了金刚石大单晶的生长实验,系统地考察了触媒组分对金刚石单晶裂纹缺陷的影响.首先,通过对两种组分触媒晶体生长实验对比发现,金刚石大单晶裂纹缺陷出现的概率与触媒组分相关联.同NiMnCo触媒相比, FeNiCo触媒生长的金刚石单晶更容易出现生长裂纹.我们认为,这与FeNiCo触媒黏度高、流动性差、碳素输运能力差、生长中晶体比表面积大,进而导致其对生长条件稳定性的要求较高有关.其次,两种触媒极限增重速度和生长时间的关系曲线表明,相同生长时间条件下, NiMnCo触媒生长金刚石单晶的极限增重速度相对较大.再次,扫描电子显微镜测试结果表明,裂纹缺陷的出现与否同晶体表面平整度的高低无必然联系,表面平整度高的金刚石单晶内部也可能存在裂纹缺陷.最后,经对金刚石单晶傅里叶微区红外测试结果进行分析,得出了氮杂质含量的高低与金刚石单晶裂纹缺陷的出现与否无内在关联性的研究结论.  相似文献   
35.
为解决激光应用中的光束指向抖动问题,提出一种基于高斯过程回归(Gaussian process regression)的激光光束指向稳定性优化方案。介绍了激光光束指向稳定系统装置构成及原理,论述了高斯过程回归方法的原理及其作为激光光束快速稳定控制算法的优势。经过该方法优化后,指向抖动达到水平方向2.3μrad,竖直方向3.3μrad,将激光系统指向稳定性提高了1个数量级以上。指向性抖动为已有线性反馈系统的20%,尤其对于高频噪声优化有显著效果。该研究对于激光光束指向性敏感的精密实验和精密加工具有重要意义。  相似文献   
36.
张业文  杨青青  周策峰  李平  陈润锋 《化学进展》2022,34(10):2146-2158
热激活延迟荧光(Thermally activated delayed fluorescence, TADF)材料由于三线态激子可通过反系间窜越(Reverse intersystem crossing, RISC)转换为单线态激子,在有机发光二极管(Organic light-emitting diodes, OLEDs)中理论上可达到100%的激子利用率而被广泛关注。但实验上开发设计高性能TADF材料较为复杂且研究周期较长,理论研究可以从本质上建立材料结构-性能的关系,预测材料的性质并提供一定的分子设计策略。本文围绕高性能TADF材料的开发,从发光原理出发,系统阐述了分子的设计策略及光物理参数如材料单-三线态能级差(Single-triplet energy gap, ΔEST)、系间/反系间窜越速率、吸收/发射光谱、辐射/非辐射速率等的计算原理、计算方法和研究进展。最后我们探讨了TADF材料理论研究面临的机遇和挑战,通过对TADF材料的理论研究综述和研究前景的展望,期待吸引更多的研究工作者,推动该领域的发展和突破。  相似文献   
37.
《大学化学》2021,36(7)
针对传统实验教学方法中存在的问题与不足,以仪器分析实验课程为例,提出了以学生为中心的混合式教学设计,通过分层教学满足个性化培养需求。基于大夏学堂在线学习平台,通过线上、线下环环相扣的教学活动有效激发学生的学习兴趣与主动性,引导学生内化知识,培养分析解决问题的高阶思维与综合能力,促进学生全面发展。  相似文献   
38.
通过精心设计和实施课中提问、课后作业、单元练习和分组讨论(包括通过微信)等一系列过程化考核措施,即时掌握学生对知识的认识状态,及时调整教学进度,改进教学方法;学生在参与大量的过程化考核过程中也逐渐学会了大学化学的学习方法,并能掌握知识的精髓。  相似文献   
39.
针对满足广义Khasminskii条件的由维纳过程和泊松随机测度驱动的自变量分段连续型随机微分方程(EPCASDEs),给出了Euler方法,广义Khasminskii条件比经典条件包容了更多的EPC.ASDEs.现有文献对该类方程的研究成果较少.针对EPCASDEs在广义Khasminskii条件下证明了全局解的存在唯一性,并研究了Euler方法的依概率收敛性.给出了数值算例支持主要结论.  相似文献   
40.
基于双速度Brinkman-Darcy扩展流动模型,分析了高速流体在双分散多孔介质圆形和圆环形通道内的流动特征.双分散多孔介质裂纹相(f相)和多孔相(p相)流场相互耦合且本质上受四阶微分方程控制.采用正常模式降阶法将原控制方程化简为含两个中间变量的二阶解耦微分方程组,进而方便地推得f相和p相流场的速度分布解析解.不论圆形的还是圆环形的通道,两种结果均表明:两相流场的速度及其速度差随着Darcy数的提高而增大;但随着两相间动量传递程度的加强,两相流场呈现出相反的速度变化趋势,从而导致速度差变小.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号