首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
本文计算了环形截面的扩压通道内带进气旋绕的流动.在小横向流假定下.用三维边界层积分方程法求解内外壁面附近的流动.通过对子午面上与流线子午投影准正交方向的速度梯度方程和流量不变方程的迭代求解得出边界层外的势流场.计算与实验结果基本符合.本研究可用于分析环形扩压器内带进气予旋的流动.  相似文献   

2.
本文应用摄动方法研究了非牛顿流体在偏心环形空间中轴向层流的流动规律.文中以相对偏心度ε作为摄动参数,得到了其流场、极值速度、压力梯度等流动参数的一阶解.  相似文献   

3.
在一个平行板通道中,部分充满了均匀的多孔介质,部分为纯流体的流动区,对其微通道中完全发展的不稳定层流进行了数值分析,流动由其中一块板的运动和压力梯度所引起.多孔介质区域的流动,采用扩展的Brinkman模型,即Darcy模型,纯净流动区域的流动,采用Stokes方程.还对稳定的完全发展流进行了理论分析,给出了分界面速度、边界板处的速度和表面摩擦的闭式解.通过数值计算发现,稳定完全发展流的闭式解,和不稳定流动的数值解,在所有时间点上得到很好地吻合.  相似文献   

4.
接触角滞后性表现为前进和后退接触角不同,其是润湿表面上两相流动中的重要现象.该文采用改进的伪势格子Boltzmann(LB)两相模型,并与几何润湿边界条件相结合,研究了接触角滞后性、毛细数以及几何结构对多孔介质内不混溶驱替过程的影响.数值结果表明:单渗透性多孔介质内相同毛细数下,保持后退角一定,驱替效率随着前进角的增大而增大;疏水和中性接触角滞后性窗口中,驱替效率随滞后性窗口大小增大而减小.在亲水接触角滞后性窗口中,接触角滞后性大小作用不明显;同等窗口大小下,所有选取的亲水滞后性窗口驱替效率大于中性滞后性窗口,中性滞后性窗口驱替效率大于疏水滞后性窗口.单渗透性多孔介质内相同接触角滞后性条件下,毛细数C_a越大,驱替相在多孔介质内的指进现象越明显,驱替效率越小.另外,双渗透多孔介质中驱替相更易在高渗透性区域流动并率先突破边界,驱替效率较单渗透性显著下降.  相似文献   

5.
在一个由两块无限竖直平行板组成的管道中,充满着多孔的介质材料,使用Darcy模型(Brinkman模型的推广)的动量方程,连同能量方程,计算不可压缩、粘性、放/吸热流体在该管道中的不稳定自然对流,即Couette流动.流动是由于边界平板有不对称的加热,以及作加速运动所引起.选用合理的无量纲参数,对控制方程进行简化,通过Laplace变换进行解析求解,得到闭式的速度和温度分布曲线解,随后导出表面摩擦力和传热率.发现在竖直管道中的不同剖面,流体的流动及温度分布曲线随着时间而增加,且在运动平板附近更高.特别是,流体的速度和温度随着平板间距的增加而增加,但是,表面摩擦力和热传导率随着平板间距的增加而减小.  相似文献   

6.
本文依据文献[1]的密相两相流动的数学模型,对垂直圆管中密相两相流动进行了解析求解,分别得到了连续相和分散相的速度解析表达式.在相间阻力与相间速度差成比例时,除了在离管壁面很近的薄区之外,管道流动规律与达西渗流定律完全一致.本文验证了文献[1]的密相两相流动数学模型的假定在本文情形下是合理的.  相似文献   

7.
分析了流经多孔介质的、充满颗粒材料的、混合液流动中的颗粒相性态.试图建立扩散和耗散过程模型,量化了在本征体积平均时出现的偏差项,从而导出流动方程.  相似文献   

8.
将多孔介质局部细观流动与基于Darcy定律的宏观物理模型相结合,应用三维CFD-DEM对多孔介质流场进行局部细观数值模拟,得到多孔介质的惯性阻力系数和粘性阻力系数.并将其作为参数提供给基于Darcy定律的CFD多孔介质模型,从而可用于更大规模的多孔介质流场计算.应用Voronoi多面体作为网格单元,解决了CFD DEM中网格孔隙率精确计算的困难.文中发展的多尺度结合应用的研究方法,在计算精度和计算效率的矛盾中找到了较好的平衡,对于工程应用而言,有节约实验成本、提高计算结果可靠性的功效.  相似文献   

9.
在圆环结构中研究拟塑性流体作圆形的Couette流动.流体的粘度依赖于对守恒方程有直接影响的剪切率,守恒方程采用谱方法求解.可以证明所采用的拟塑性模型,可以被适当地表示为典型的非线性流动.在早期研究中,为了方便数值计算,粘度表达式中只考虑了剪切率的二次项,与此不同,这里考虑了二次幂项.圆形Couette流动中弯曲的流线,造成离心的不稳定性,引起环形的漩涡,称之为Taylor漩涡.进而发现,随着拟塑性影响的增加,临界Taylor数下降.与已有圆形Couette流动的实验相比较,两者有着良好的一致性.  相似文献   

10.
对半无限竖直平板为边界的多孔介质,研究了传热、传质对微极流体不稳定滑流的影响,其化学反应是一级均匀的。均匀磁场垂直作用于可以吸收微极流体的多孔表面,吸引速度随着时间而变化。自由流动的速度随着微小扰动而呈指数增大或减小。采用近似方法获得了微极流体的速度、微转动、温度、浓度的表达式,还得到了在不同流体特征和流动条件下,壁面的摩擦系数、耦合应力系数、传热率和传质率。  相似文献   

11.
引入Charent压力变量,对于多孔介质中两相不可压缩流体的非混溶驱动问题,其模型表现为耦合的非线性偏微分方程组,一个是压力方程,另一个为饱和度方程.文中考虑一维问题且假定达西速度“已知,建立了在时间上进行局部加密的有限差分格式,给出了饱和度的最大模误差估计.最后给出了数值算例.  相似文献   

12.
In this paper, we study the well‐posedness of a coupled Darcy–Oseen resolvent problem, describing the fluid flow between free‐fluid domains and porous media separated by a semipermeable membrane. The influence of osmotic effects, induced by the presence of a semipermeable membrane, on the flow velocity is reflected in the transmission conditions on the surface between the free‐fluid domain and the porous medium. To prove the existence of a weak solution of the generalized Darcy–Oseen resolvent system, we consider two auxiliary problems: a mixed Navier–Dirichlet problem for the generalized Oseen resolvent system and Robin problem for an elliptic equation related to the general Darcy equations. © 2016 The Authors Mathematical Methods in the Applied Sciences Published by John Wiley & Sons Ltd.  相似文献   

13.
A linear system is considered of the differential equations describing a joint motion of an elastic porous body and a fluid occupying a porous space. The problem is linear but very hard to tackle since its main differential equations involve some (big and small) nonsmooth oscillatory coefficients. Rigorous justification under various conditions on the physical parameters is fulfilled for the homogenization procedures as the dimensionless size of pores vanishes, while the porous body is geometrically periodic. In result, we derive Biot’s equations of poroelasticity, the system consisting of the anisotropic Lamé equations for the solid component and the acoustic equations for the fluid component, the equations of viscoelasticity, or the decoupled system consisting of Darcy’s system of filtration or the acoustic equations for the fluid component (first approximation) and the anisotropic Lamé equations for the solid component (second approximation) depending on the ratios between the physical parameters. The proofs are based on Nguetseng’s two-scale convergence method of homogenization in periodic structures.  相似文献   

14.
We study the homogenization of a slow viscous two‐phase incompressible flow in a domain consisting of a free fluid domain, a porous medium, and the interface between them. We take into account the capillary forces on the fluid‐fluid interfaces. We construct boundary layers describing the flow at the interface between the free fluid and the porous medium. We derive a macroscopic model with a viscous two‐phase fluid in the free domain, a coupled Darcy law connecting two‐phase velocities in the porous medium, and boundary conditions at the permeable interface between the free fluid domain and the porous medium.  相似文献   

15.
A numerical solution is developed for the viscous, incompressible, magnetohydrodynamic flow in a rotating channel comprising two infinite parallel plates and containing a Darcian porous medium, the plates lying in the xz plane, under constant pressure gradient. The system is subjected to a strong, inclined magnetic field orientated to the positive direction of the y-axis (rotational axis, normal to the xz plane). The Navier–Stokes flow equations for a general rotating hydromagnetic flow are reduced to a pair of linear, viscous partial differential equations neglecting convective acceleration terms, for primary velocity (u′) and secondary velocity (v′) where these velocities are directed along the x and y axes. Only viscous terms are retained in the momenta equations. The model is non-dimensionalized and shown to be controlled by a number of dimensionless parameters. The resulting dimensionless ordinary differential equations are solved using a robust numerical method, Network Simulation Methodology. Full details of the numerics are provided. The present solutions are also benchmarked against the analytical solutions presented recently by Ghosh and Pop [Ghosh SK, Pop I. An analytical approach to MHD plasma behaviour of a rotating environment in the presence of an inclined magnetic field as compared to excitation frequency. Int J Appl Mech Eng 2006;11(4):845–856] for the case of a purely fluid medium (infinite permeability). We study graphically the influence of Hartmann number (Ha, magnetic field parameter), Ekman number (Ek, rotation parameter), Hall current parameter (Nh), Darcy number (Da, permeability parameter), pressure gradient (Np) and also magnetic field inclination (θ) on primary and secondary velocity fields. Additionally we investigate the effects of these multiphysical parameters on the dimensionless shear stresses at the plates. Both primary and secondary velocity are seen to be increased with a rise in Darcy number, owing to a simultaneous reduction in Darcian drag force. Primary velocity is seen to decrease with an increase in Hall current parameter (Nh) but there is a decrease in secondary velocity. The study finds important applications in magnetic materials processing, hydromagnetic plasma energy generators, magneto-geophysics and planetary astrophysics.  相似文献   

16.
A numerical model is developed to study magnetohydrodynamics (MHD) mixed convection from a heated vertical plate embedded in a Newtonian fluid saturated sparsely packed porous medium by considering the variation of permeability, porosity and thermal conductivity. The boundary layer flow in the porous medium is governed by Forchheimer–Brinkman extended Darcy model. The conservation equations that govern the problem are reduced to a system of non-linear ordinary differential equations by using similarity transformations. Because of non-linearity, the governing equations are solved numerically. The effects of magnetic field on velocity and temperature distributions are studied in detail by considering uniform permeability (UP) and variable permeability (VP) of the porous medium and the results are discussed graphically. Besides, skin friction and Nusselt number are also computed for various physical parameters governing the problem under consideration. It is found that the inertial parameter has a significant influence in increasing the flow field and the rate of heat transfer for variable permeability case. The important finding of the present work is that the magnetic field has considerable effects on the boundary layer velocity and on the rate of heat transfer for variable permeability of the porous medium. Further, the results obtained under the limiting conditions were found to be in good agreement with the existing ones.  相似文献   

17.
The fully developed electrically conducting micropolar fluid flow and heat transfer along a semi-infinite vertical porous moving plate is studied including the effect of viscous heating and in the presence of a magnetic field applied transversely to the direction of the flow. The Darcy-Brinkman-Forchheimer model which includes the effects of boundary and inertia forces is employed. The differential equations governing the problem have been transformed by a similarity transformation into a system of non-dimensional differential equations which are solved numerically by element free Galerkin method. Profiles for velocity, microrotation and temperature are presented for a wide range of plate velocity, viscosity ratio, Darcy number, Forchhimer number, magnetic field parameter, heat absorption parameter and the micropolar parameter. The skin friction and Nusselt numbers at the plates are also shown graphically. The present problem has significant applications in chemical engineering, materials processing, solar porous wafer absorber systems and metallurgy.  相似文献   

18.
It is shown that for the general case of a system of non-linear equations, describing multicomponent isothermal flow in a porous medium with phase transitions, as in hyperbolic systems, weak concentration discontinuities propagate with finite velocities, which are determined by solving an eigenvalue problem. If the seeping phases are incompressible and there are no phase transitions, the results obtained for weak discontinuities transfer into the well-known formulae for the Buckley – Leverett model. The results are demonstrated for the case of two-component seepage with phase transitions.  相似文献   

19.
Lie group method is investigated for solving the problem of heat transfer in an unsteady, three-dimensional, laminar, boundary-layer flow of a viscous, incompressible and electrically conducting fluid over inclined permeable surface embedded in porous medium in the presence of a uniform magnetic field and heat generation/absorption effects. A uniform magnetic field is applied in the y-direction and a generalized flow model is presented to include the effects of the macroscopic viscous term and the microscopic permeability of porous medium. The infinitesimal generators accepted by the equations are calculated and the extension of the Lie algebra for the problem is also presented. The restrictions imposed by the boundary conditions on the generators are calculated. The investigation of the three-independent-variable partial differential equations is converted into a two-independent-variable system by using one subgroup of the general group. The resulting equations are solved numerically with the perturbation solution for various times. Velocity, temperature and pressure profiles, surface shear stresses, and wall-heat transfer rate are discussed for various values of Prandtl number, Hartmann number, Darcy number, heat generation/absorption coefficient, and surface mass-transfer coefficient.  相似文献   

20.
In order to take into account thermal effects in flows through porous media, one makes ad hoc modifications to Darcy’s equation by appending a term that is similar to the one that is obtained in the Oberbeck–Boussinesq approximation for a fluid. In this short paper we outline a systematic procedure for obtaining an Oberbeck–Boussinesq type of approximation for the flow of a fluid through a porous medium. In addition to establishing the appropriate equation for a flow governed by Darcy’s equation, we proceed to obtain the approximations for flows governed by equations due to Forchheimer and Brinkman.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号