首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11103篇
  免费   2836篇
  国内免费   5786篇
化学   9278篇
晶体学   773篇
力学   2266篇
综合类   254篇
数学   988篇
物理学   6166篇
  2024年   100篇
  2023年   453篇
  2022年   588篇
  2021年   582篇
  2020年   419篇
  2019年   566篇
  2018年   377篇
  2017年   499篇
  2016年   520篇
  2015年   633篇
  2014年   1101篇
  2013年   927篇
  2012年   847篇
  2011年   926篇
  2010年   780篇
  2009年   863篇
  2008年   932篇
  2007年   818篇
  2006年   805篇
  2005年   845篇
  2004年   852篇
  2003年   903篇
  2002年   719篇
  2001年   713篇
  2000年   471篇
  1999年   362篇
  1998年   309篇
  1997年   331篇
  1996年   231篇
  1995年   230篇
  1994年   208篇
  1993年   143篇
  1992年   155篇
  1991年   148篇
  1990年   138篇
  1989年   126篇
  1988年   35篇
  1987年   21篇
  1986年   22篇
  1985年   7篇
  1984年   4篇
  1983年   7篇
  1982年   8篇
  1980年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
为提高金属材料表面涂层的耐磨性,采用激光熔覆工艺制备了Al_2O_3增强Fe901金属陶瓷复合涂层,研究了Al_2O_3陶瓷增强相对Fe基熔覆层组织与性能的影响。利用扫描电镜和X射线衍射仪检测了复合涂层的微观组织和物相;采用显微硬度仪和摩擦磨损试验机分析了复合涂层的显微硬度与耐磨性。结果表明:Fe901涂层的组织以柱状枝晶和等轴枝晶为主,添加的Al_2O_3可促使涂层组织转变为均匀的白色网状晶间组织及其包裹的细小黑色晶粒;复合涂层中的Al_2O_3陶瓷颗粒表面发生微熔,与Fe、Cr结合生成Fe3Al及(Al,Fe)4Cr金属间化合物,起到增加Al_2O_3陶瓷颗粒与金属黏结相结合强度的作用;当Al_2O_3陶瓷颗粒的质量分数为10%时,复合涂层的显微硬度较Fe901涂层增加了16.4%,复合涂层的摩擦磨损质量损失较Fe901涂层降低了50%;添加适量的Al_2O_3陶瓷有助于提高涂层的显微硬度及耐磨性。  相似文献   
32.
建立了一种短腔长复合式光纤法布里-珀罗压力传感器反射光谱的模型,提出了一种双参数椭圆拟合腔长解调算法,并对腔长为26~30μm的复合式法布里-珀罗腔的解调进行了仿真。结果表明,采用双参数椭圆拟合算法进行腔长解调的最大误差仅为0.05μm。搭建了光纤法布里-珀罗传感器解调系统,在加压条件下对复合式光纤法布里-珀罗压力传感器进行了解调实验,实现了20 kHz的解调速率,验证了所提算法在解调短腔长复合式光纤法布里-珀罗压力传感器方面的可行性与实时性。  相似文献   
33.
34.
环境气体的压强对激光诱导等离子体特性有重要影响.基于发射光谱法开展了气体压强对纳秒激光诱导空气等离子体特性影响的研究,探讨了气体压强对空气等离子体发射光谱强度、电子温度和电子密度的影响.实验结果表明,在10-100 kPa空气压强条件下,空气等离子体发射光谱中的线状光谱和连续光谱依赖于气体压强变化,且原子谱线和离子谱线强度随气体压强的变化有明显差别.随着空气压强增大,激光击穿作用区域的空气密度增加,造成激光诱导击穿空气几率升高,从而等离子体辐射光谱强度增大.空气等离子体膨胀区域空气的约束作用,增加了等离子体内粒子间的碰撞几率以及能量交换几率,并且使离子-电子-原子的三体复合几率增加,因此造成原子谱线OⅠ777.2 nm与NⅠ821.6 nm谱线强度随着气体压强增大而增大,在80 kPa时谱线强度最高,随后谱线强度缓慢降低.而离子谱线N Ⅱ 500.5 nm谱线强度在40 kPa时达到最大值,气体压强大于40 kPa后,谱线强度随压强增加而逐渐降低.空气等离子体电子密度均随压强升高而增大,在80 kPa后增长速度变缓.等离子体电子温度在30 kPa时达到最大值,气体压强大于30 kPa后,等离子体电子温度逐渐降低.研究结果可为不同海拔高度的激光诱导空气等离子体特性的研究提供重要实验基础,为今后激光大气传输、大气组成分析提供重要的技术支持.  相似文献   
35.
以陶瓷基功能材料载体为研究对象,按照其生产工艺配方,研究了纤维种类(莫来石、氧化铝、氧化锆)及其添加量对陶瓷基功能材料载体性能的影响.在相同实验条件且不影响其功能化参数前提下,将其与未添加纤维的空白试样力学性能进行对比.结果表明,试样经1200℃烧成后,相比莫来石与氧化铝纤维增强的陶瓷基功能材料载体,氧化锆纤维的增强效果最好.当氧化锆纤维的添加量为0.8 wt;时,试样的吸水率和气孔率均较低,分别为2.0;、4.0;,相比空白对比试样抗折强度增强了42.4;.  相似文献   
36.
以煤矸石为原料,经Na2CO3碱熔活化和水热合成获得了沸石分子筛;利用Cd2+对沸石分子筛进行离子交换并通过沉淀过程制得了CdS/沸石分子筛复合粉体.采用X射线粉末衍射(XRD)和扫描电子显微镜(SEM)对所得样品进行表征,并以模拟太阳光为光源,罗丹明B (RhB)为目标降解物,对其光催化活性进行了研究.结果显示:沸石分子筛上负载的CdS的晶相为立方相,制得的CdS/沸石分子筛复合粉体具有较好的光催化活性,且三次循环利用后仍具有较好的催化活性,在模拟太阳光辐照下,CdS/zeolite(0.5 M)复合粉体重复利用3次后,处理260 min对RhB的降解率仍可达91.3;.所得粉体对RhB的光催化过程符合一级动力学方程式,光催化过程中,RhB 紫外可见光谱的蓝移现象揭示所得CdS/沸石分子筛可通过脱乙基-共轭显色基团断裂途径降解RhB.  相似文献   
37.
随着能源紧缺与环境污染问题的日益严重,太阳能的开发利用越来越受到重视,其中非晶硅薄膜太阳能电池由于其制备工艺简单、价格低廉等优点被广泛地研究.为了使非晶硅薄膜太阳能电池得到更好地利用,提高其转换效率和稳定性显得尤为重要.引入复合背电极是提高非晶硅太阳能电池性能的有效手段,其中对GZO/Al复合背电极的研究还未见报道.在该工作中,利用磁控溅射法在非晶硅电池上制备了GZO/Al复合背电极,研究了复合背电极的制备条件及其对非晶硅太阳能电池性能的影响.结果显示,当GZO层的溅射功率为90 W、Al层的溅射功率为90 W时,具有复合背电极的太阳能电池表现出较好的光电转换性能,其短路电流(ISC)、开路电压(VOC)、填充因子(FF)和电池的光电转换效率(η)分别为8.92 mA、1.55 V、54.48;和7.53;.相较于单层Al背电极的太阳能电池,其光电转换效率大幅提高了47.6;(相对效率).  相似文献   
38.
数据驱动计算力学研究进展   总被引:2,自引:0,他引:2  
以数字孪生、人工智能为核心的大数据理念正深刻影响着第四次工业革4 命,数据驱动计算力学在此背景下应运而生并展现勃勃生机。与此同时,航5 空航天等尖端工业领域对高性能材料与结构的先进制造与安全评估提出了更6 严峻的挑战,经典计算力学已很难实现成倍缩短产品研发周期、实时跟踪产7 品信息并提供解决方案的目标。因此,发展面向高性能材料与结构的数据驱8 动计算力学正当其时且刻不容缓。本文拟通过梳理数据驱动计算力学的部分9 研究现状,探讨并浅析数据驱动计算力学的发展趋势.  相似文献   
39.
近来,人们在凝聚态体系中发现了由拓扑不变量定义的物相,其中最重要的有拓扑绝缘体、拓扑半金属和拓扑超导体等.这些物相的拓扑性质由非平凡的拓扑数描述,相应的材料被称为拓扑材料,具有诸多新奇的物理特性.其中拓扑超导体由于边界上有满足非阿贝尔统计的Majorana零能模,成为实现拓扑量子计算的主要候选材料.除了探索本征的拓扑超导体外,由于拓扑性质上的相似性,在不超导的拓扑材料中调制出超导自然成为了实现拓扑超导的重要手段.目前,人们发展了栅极调制、掺杂、高压、近邻效应调制和硬针尖点接触等多种技术,已经成功地在许多拓扑绝缘体和半金属中诱导出了超导,并对超导的拓扑性和Majorana零能模进行了研究.本文回顾了本征拓扑超导候选材料,以及拓扑绝缘体和半金属中诱导出超导的代表性工作,评述了不同实验手段的优势和缺陷、分析了其超导拓扑性的证据,并提出展望.  相似文献   
40.
采用低廉的铝盐和钙盐,通过共沉淀法制备了一系列不同CaO含量的CaO-Al2O3复合氧化物,并用XRD、TG-DTG、N2吸附-脱附、SEM等手段对其进行表征。结果表明,制备的复合氧化物两相分布均匀、孔隙率较高、存在较多的介孔和大孔,比表面积也较大。采用动态吸附法将制备出的复合氧化物应用于重整生成油中氯化氢的脱除反应中,结果表明,高比表面积和大孔容的CAO-1具有最佳的HCl脱除效果,当反应温度为55 ℃、液空速为3 h-1,重整生成油中氯含量小于等于15 ng/μL时,其氯容可达到18%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号