首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   60篇
化学   66篇
力学   2篇
数学   1篇
物理学   2篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2018年   5篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   5篇
  2013年   3篇
  2012年   1篇
  2010年   6篇
  2009年   5篇
  2008年   4篇
  2007年   7篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   3篇
  1987年   1篇
  1982年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
31.
单原子催化剂(single-atom catalyst,SAC)可以最大化金属原子利用率,并具有独特的电子特性,已经在各种催化反应中进行了广泛的探索。然而,与纳米催化剂相比,贵金属SAC在烃类氧化反应中通常被认为是不活泼的。在本文中,证明了WO3-TiO2负载的PtSAC (Pt1/WO3-TiO2)在光热协同催化氧化C3H8和C3H6这两种典型的挥发性有机化合物(VOCs)中表现出比相应的纳米催化剂(PtNP/WO3-TiO2)高得多的活性。研究发现,Pt1/WO3-TiO2和PtNP/WO3-TiO2都可以通过克服氧中毒来提高光热协同催化C3H8氧化...  相似文献   
32.
无限元方法及其应用   总被引:4,自引:0,他引:4  
限元是几何上趋于无穷的单元,它是一种特殊的有限元,也是对有限元在求解无界域 问题上的有效补充, 并可实现与有限元间的无缝连接.无限元分为映射无限元和非映射 无限元:映射无限元需要引入几何映射,在局部坐标系中构造插值形状函数,如Bettess 元和Astley元;非映射无限元则直接在整体坐标系中构造插值形状函数,如Burnett元. 本文评述求解无界域问题的无限元方法的研究现状和最新发展.首先介绍无限单元的概念 和无限元方法的特点;围绕求解以Helmholtz方程控制的波动问题,评述几种常规无限单 元的优劣,这些单元包括Bettess元、Astley元和Burnett元.然后介绍新近提出的广义 无限元方法,以及与常规无限元方法的区别与联系.最后对无限元方法在各种问题中的 应用做了总结.  相似文献   
33.
CO低温氧化是多相催化领域研究最多的反应之一.作为简单、典型的探针反应,其不仅具有重要的基础研究价值,而且在环境污染消除等方面也有着非常重要的实际应用价值.金属氧化物如铜锰(Hopcalite)、铜铬复合氧化物以及氧化钴等都具有优异的低温CO氧化活性.然而氧化物催化剂热稳定性低、反复启动性能差、以及对硫化物、水等物质敏感,严重制约了其实际应用.相对而言,负载型贵金属催化剂因具有较高的CO氧化活性、反应稳定性以及热稳定性而受到关注.但是贵金属价格昂贵、资源稀少,使其持续应用面临严峻挑战.为了提高贵金属利用效率、降低贵金属使用量,在负载型贵金属催化剂中,贵金属多以纳米尺度分散于高比表面载体上.由于多相催化一般在纳米粒子表面发生,只有表面金属原子能够接触到反应物,因而贵金属原子利用率仍然有待提高.最近本课题组成功开发以原子级分散的单原子催化剂并提出“单原子催化”的概念.后续研究以及其他研究人员相继证明氧化物负载贵金属单原子具有高活性和/或不同于纳米粒子的反应性能,表明开发单原子催化剂是最大化贵金属利用效率、降低贵金属用量的可行途径.对于CO氧化而言,目前普遍认为负载Au催化剂具有最高活性.然而负载Au单原子催化剂是否具有活性仍存争议:理论计算表明氧化物负载Au单原子催化剂具有很好的活性,但是缺少实验证据;目前已有一些氧化物负载Au正价离子催化剂的报道,结果也都表明Au单原子活性远低于纳米粒子或纳米团簇.最近本课题组发现氧化铁负载Au单原子不仅具有与Au纳米粒子相当的单位活性位(TOF)活性而且具有更高的单位金属重量(反应速率)活性以及非常高的反应稳定性.本文将载体拓展到氧化钴,开发了具有更高活性的氧化钴负载Au单原子催化剂, Au负载量仅为0.05 wt%即可在室温条件下实现CO完全转化. Co3O4载体用Co(NO3)3与Na2CO3通过共沉淀法制备,400 oC焙烧.然后通过简单的沉淀吸附法制备Co3O4负载Au单原子催化剂(Au1/Co3O4),确保Au单原子能够分散于载体的表面.具有原子分辨率的球差校正高分辨电镜照片显示Au原子确实以单原子形式分散于载体上.催化剂在第一个循环中活性并不非常高,但是在第二个循环中活性提高非常明显,可以在室温条件下实现CO全转化.为了弄清楚活性提高的原因,我们用惰性气体(He)、氧化性气体(5%O2/He)以及还原性气体(5%CO/He)对催化剂进行了热处理,但是活性提高并不明显.由此推断催化剂是在第一个循环反应过程中发生了某些变化,导致活性显著提高.空白载体实验表明Co3O4载体本身虽然具有反应活性,但是远不如负载少量Au原子活性高,表明Au原子或Au原子与载体一起起到高活性的作用.稳定性研究表明该催化剂在室温条件下容易失活,但经惰性气体或氧化气体处理后活性可恢复,表明不是结构性失活而是可逆失活,说明单原子非常稳定.  相似文献   
34.
甘露醇和山梨醇等六元醇是重要的多元醇,广泛用于食品、医药和化工等领域,尤其山梨醇被美国能源部定为一种重要的平台化合物.工业上,六元醇通常由果糖、葡萄糖和蔗糖加氢得到,此路线存在与人争粮争地的问题.菊芋是一种来源广泛、价格低廉的生物质资源,它富含果糖基多糖(菊糖),菊糖的含量占菊芋根茎干重的70%–90%,由生物质菊芋出发催化转化制备六元醇具有重要意义.由菊芋根茎催化转化制备六元醇是一个串联反应过程,菊芋根茎先经过水解得到糖类,然后经过加氢反应得到六元醇.我们用磺化活性炭AC-SO3H代替AC载体以促进菊芋根茎水解反应. AC经磺化后,比表面积由原来的768增至1020 m2/g,酸强度由原来的0.21增至0.68 mmol/g,表明磺化过程不仅除去了AC中的杂质,也在其表面固定了大量的-SO3H,-COOH,-OH等酸性基团.透射电镜结果表明,1%Ru/AC和1%Ru/(AC-SO3H)催化剂上Ru高度分散. CO化学吸附表明,上述两种催化剂Ru的分散度分别为30.9%和74.2%,表明AC经磺化后产生了更多的固定位点,使得Ru可以更好地分散在载体上.在温和条件下(100oC,6 MPa H2,5 h)将菊芋根茎转化为六元醇,1%Ru/AC催化剂上六元醇收率为52.7%,而1%Ru/(AC-SO3H)催化剂上可达84.1%.这归因于后者的酸强度和Ru分散度较大:其表面的酸性基团-SO3H,-COOH,-OH促进了菊芋根茎的水解,高分散度的Ru则促进了糖加氢反应的进行.将Ru的负载量提高至3%,六元醇产率高达92.6%.以1%Ru/AC和1%Ru/(AC-SO3H)为催化剂,分别以果糖和菊粉为原料制备六元醇.结果表明,以果糖为原料时两种催化剂性能相同;以菊粉为原料时,1%Ru/AC的催化性能远低于1%Ru/(AC-SO3H).这表明菊粉和菊芋根茎转化反应,速控步骤是水解反应,而磺化过程引入的酸性基团可以促进水解过程的进行.在N2气氛下反应,主要产物为果糖和葡萄糖,表明菊芋根茎水解反应是主要的反应路径.在H2气氛下反应,糖类产率在1 h内达到最大值,然后开始逐渐降低,同时加氢产物逐渐增加.因此, H2气氛下反应过程中生成的糖类是中间产物.以菊芋根茎为原料,1%Ru/(AC-SO3H)催化剂循环使用4次后六元醇产率由87%降至55%;而以菊粉为原料,循环4次后六元醇产率略有降低. ICP测试表明, Ru催化剂并未流失,3次循环后催化剂的CO化学吸附表明, Ru的分散度由74.2%降至17.8%.这表明催化剂失活是由菊芋根茎中的杂质毒化Ru活性位点导致的.  相似文献   
35.
单原子催化的最新进展   总被引:1,自引:0,他引:1  
单原子催化剂由于其自身兼具均相催化剂的"孤立活性位点"和多相催化剂易于循环使用的特点,近年来受到了广泛关注.本综述概括了2015至2016年单原子催化领域的重要进展,重点介绍了新的催化剂制备方法、单原子金催化剂在CO氧化中的进展、单原子钯/铂催化的选择性加氢反应以及铂或非贵金属单原子催化剂在电化学中的应用等.在催化剂的合成方面,用传统的湿化学方法制备的单原子催化剂通常金属负载量较低,使得催化剂的常规表征比较困难.最近发展的一系列新型合成方法例如原子层沉积法、高温蒸汽转移法、光介还原法以及热解法等制备M?N?C等非贵金属催化剂等,尽管有不同程度的局限性,但均可以成功制备高负载量的单原子催化剂.单原子催化剂的载体得到了拓展,除传统的金属氧化物外,金属有机框架材料和二维材料等均被用于单原子催化剂的制备.在单原子催化剂的应用方面,金由于较高的电负性和与氧的弱相互作用能力,因而与氧化物载体作用较弱,不易形成单原子催化剂.但近期报道了成功制备的单原子金催化剂,在CO氧化反应、乙醇脱氢和二烯加氢反应中都有不错的进展.本文还介绍了铂和钯单原子(合金)催化剂在加氢反应中的优异活性及选择性,表明了单原子催化剂在选择性上的优势.将一种金属掺杂到另一种金属基底中制备的单原子合金催化剂也因其特异的性能备受关注.此外,对于化工生产中典型的均相催化反应,如氢甲酰化,单原子催化剂在无外加膦配体的情况下表现出高活性的同时还能很好地控制化学选择性,甚至达到令人满意的区域选择性,从实验上证明了单原子催化剂有望作为沟通均相催化和多相催化的桥梁.单原子催化剂在电催化和光催化中也得到了快速发展.铂单原子催化剂因其高原子利用率和高稳定性,在析氢反应和氧还原反应中有着良好的应用前景.另一方面,非贵金属特别是Co单原子催化剂在光电催化中因其优异的活性和巨大潜力得到了较深入的研究.除了上述进展,单原子催化领域还有许多基本问题需要继续深入研究,对单原子催化剂更加全面透彻的认识将为设计发展新型催化体系,扩展单原子催化领域提供指导和借鉴.  相似文献   
36.
甘油作为生物柴油产业的副产物大量过剩,通过甘油氢解制备具有高附加值的丙二醇既符合原子经济的原则,又具有重要的学术意义和应用价值.尤其是选择氢解制得1,3-丙二醇,因其产物在新型聚酯材料合成中不可替代的作用而备受关注,被认为是最具工业应用潜力的甘油转化工艺之一.目前,可高选择性制得1,3-丙二醇的催化剂体系主要是为铱-铼催化剂和铂-钨催化剂两类.前期工作表明,氧化钨担载的铂单原子/准单原子催化剂(Pt/WOx)具有优异的低压活性(1 MPa氢气)和1,3-丙二醇时空收率.然而在该温和条件下,催化产物仍然以过度氢解的产物正丙醇为主.一般来讲,引入助剂可以通过改变活性组分的电子结构、覆盖不利反应位点、调变载体表面化学性质等来改变催化剂的催化活性、选择性和稳定性.我们以单原子/准单原子催化剂Pt/WOx和担载型催化剂Pt/WOx/Al2O3为催化剂母体,引入过渡金属和贵金属助剂,考察助剂对氢解反应活性和选择性的影响,并对比有无氧化铝载体时助剂对反应活性的影响.对于Pt/WOx体系,La和Fe的引入有助于甘油转化率和1,3-丙二醇选择性的提高,同时也明显地提高了催化剂的稳定性.其中0.1% La是最佳引入量.然而,对于担载型催化剂Pt/WOx/Al2O3,La的引入在提高1,3-丙二醇选择性的同时,甘油的转化率也有一定程度下降.但由于Pt/WOx/Al2O3催化剂的本征活性较高,通过加入助剂提高1,3-丙二醇的选择性在实际应用中更为重要.表征分析表明,无论对于Pt/WOx还是Pt/WOx/Al2O3催化剂,大部分的La都在Pt颗粒上;同时La的引入提高了催化剂的酸量.在贵金属助剂中,Ru,Ir改性的Pt/WOx和Pt/WOx/Al2O3催化剂上,1,3-丙二醇的收率均有所降低,Ru助剂的降低幅度较小.相反,助剂Rh对Pt/WOx和Pt/WOx/Al2O3催化剂上反应性能的影响截然不同:Rh/Pt/WOx催化剂上1,3-丙二醇的收率从13.1%降到8.7%,Rh/Pt/WOx/Al2O3的1,3-丙二醇收率从31.5%略升到32.4%.另外,由于前期研究表明助剂铝的担载顺序对催化活性有重要影响,因此我们对铂、钨、铝的担载顺序进行了考察.研究表明,在活性组分铂上担载铝或钨物种对催化活性有一定程度的抑制;催化剂体系中钨的含量直接影响甘油的转化率和产物的选择性;含量过少时,甘油转化率极低并以1,2-丙二醇为主要产物.虽然大部分助剂对铂-钨催化剂体系没有明显的促进作用,但是助剂的添加通常可以抑制活性组分的烧结、提高催化剂的稳定性;因此,我们筛选出的La,Fe,Re,Ru,Rh等助剂仍具有深入研究的价值和工业应用的潜力.  相似文献   
37.
化学选择性是评价催化剂性能最重要的参数之一,它直接决定了产物的经济价值及后续的分离成本.传统的负载型金属催化剂由于其金属粒径分布不均,且不同原子数组成的粒子通常具有特征产物选择性,从而限制化学选择性的提高;另一方面,对于金属多原子活性中心,反应物在催化剂表面可以存在多种吸附构型进而衍化为不同产物,产物可控性差.因此,获得金属尺寸均一,且具有原子分散的活性中心,即单原子催化剂,成为官能团多相催化转化高选择性的迫切需求.本课题组通过400 oC还原1%-Pd/ZnO得到PdZn金属间化合物,依据其规律排布的Pd-Zn-Pd单元获得Pd基单原子催化剂.该催化剂在乙烯化工中少量乙炔的加氢转化反应中获得令人欣喜的催化性能——兼具有乙炔的高转化率和乙烯的高选择性.结合微量吸附量热、理论计算等表征,Pd活性中心在PdZn金属间化合物中的特殊空间排布是其优异催化性能的根源,即乙炔以较强的σ键吸附在两个相邻的单Pd金属中心,易吸附活化加氢生成乙烯,而乙烯则吸附于单Pd金属中心,较弱的π键形式吸附有利于其脱附避免过渡加氢.基于前期研究,构筑具有均一单金属中心的负载型单原子催化剂是获得高选择性的另一有效方法,且较之于PdZn金属间化合物催化剂,该类单原子催化剂兼具有原子利用率最大化的优点.本文采用等体积浸渍法制备Pd/ZnO催化剂,通过降低Pd金属含量(1 wt%→0.1 wt%→0.01 wt%)并在较低的温度下(100 oC)还原(H2-TPR表明高温还原形成PdZn金属间化合物型合金)得到负载型单原子催化剂(Pd1/ZnO SAC).高分辨电镜结果表明,当Pd负载量由1%降至0.1%,金属纳米颗粒的粒径尺寸显著降低,而在0.01%-Pd/ZnO催化剂表面,Pd活性中心则以单原子状态分散于载体ZnO表面.X-射线吸收光谱及电子能谱表明,随着负载量的降低,Pd活性物种具有更高的正电性.该催化剂在乙炔选择性加氢反应中表现出更加优越的催化性能,具有与PdZn催化剂相当的高选择性,而更优的比活性.这归结于Pd1/ZnO单原子催化剂的Pdδ+单原子活性中心有助于其与乙炔的静电相互作用并吸附活化加氢生成乙烯,并促使乙烯以较弱的π键吸附,从而易于从催化剂表面脱附获得高选择性.  相似文献   
38.
李林  林坚  李筱玉  王爱琴  王晓东  张涛 《催化学报》2016,(12):2039-2052
多相催化反应过程伴随着反应分子与催化剂表面之间的相互作用.这种相互作用强度与催化剂的反应性能密切相关.根据萨巴蒂尔原理(Sabatier principle),性能最优的催化剂与反应中间体之间应该具有适中的相互作用强度,一方面促进反应物活化,另一方面允许产物脱附.这样,测量和研究反应分子与催化剂之间的相互作用强度对于理解催化反应性能有非常重要的意义.当气体反应物接触到催化剂表面会伴随着热量的产生,该热量被定义为吸附热,并与吸附物种与催化剂之间形成的化学键强度直接相关.吸附热通常可以通过程序升温脱附(TPD)等方法间接获得.但是这些方法建立在吸附物种能够可逆地吸附和脱附的假设基础上.在实际的程序升温过程中,吸附物种通常会发生分解,并伴随着固体催化剂的重构等现象.因此,采用基于Tian-Calvet原理的热流量热计直接测量担载催化剂的吸附热是最可靠的吸附热测量方法.基于热流量热计测量的微量热技术的一个重要优点是采用合适的探针分子吸附,可以获得担载型催化剂表面吸附活性中心的数量、强度及其能量分布的定量信息.比如,采用碱性探针分子NH3或者吡啶,酸性探针分子CO2或SO2能够定量催化剂上酸-碱位的强度和数量,而金属催化剂活性中心可以应用H2或CO进行探测.当这些催化剂活性中心的定量表征结果与催化剂的反应活性测试结果相关联时,可以区分不同强度活性中心的反应性能,并为提高和改进催化剂性能提供研制方向.相对于NH3或CO等小分子气体,催化反应的反应物、产物或可能的中间体通常都是复杂分子,程序升温技术测量它们的吸附热时,这些分子通常会发生分解,限制了其吸附热的测量和研究.微量热技术能够直接测量这些分子的吸附热.因此,与催化反应活性相关联,反应物、产物或可能的中间体的吸附能量的测量和研究有利于更直接地认识催化剂的反应性能.在催化反应循环过程中,除了吸附,还包括表面反应和脱附步骤.这些步骤也伴随着吸附物种与催化剂之间键的形成与转换,并以热量的形式表现出来.测量这些热量对于认识催化反应过程,理解催化反应机理有重要的意义.热流量热计与催化微反系统相结合,为催化反应过程能量的测量和研究提供了可能.尽管微量热技术在测量担载型催化剂的吸附/反应能量并与反应性能相关联方面有其独特的优势,但是为了更好地用于催化研究,应该结合其它的表征技术(比如红外)确定吸附或反应物种的本质,结合理论计算对量热结果进行更好地补充和认识.本文综述了担载型催化剂的吸附/反应能量与反应性能关联的研究进展,指出了微量热技术在催化研究中的优势、不足,以及未来的研究方向.  相似文献   
39.
八甲基环四硅氧烷一氯代物微乳液聚合及其消泡性能   总被引:1,自引:0,他引:1  
八甲基环四硅氧烷一氯代物;有机硅微乳液;微乳液聚合;消泡性能  相似文献   
40.
超临界流体沉积技术在纳米复合材料制备中的应用*   总被引:1,自引:0,他引:1  
本文综述了超临界流体沉积法在纳米复合材料制备领域的进展,介绍了利用超临界流体的溶剂化特性、表面张力为零、性质随压力与温度的变化敏感等性质,制备高质量的纳米粒子、薄膜及多孔纳米材料,讨论了超临界流体沉积过程中的吸附、热力学平衡及扩散动力学等问题,总结了不同学者对该方法制备复合材料的机理研究,认为超临界流体沉积法是制备纳米复合材料的有效方法。最后,对深入开展此项研究工作需要努力的方向和解决的关键问题提出了建议。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号