首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   69篇
  国内免费   69篇
化学   144篇
晶体学   4篇
力学   26篇
综合类   16篇
数学   55篇
物理学   126篇
  2024年   3篇
  2023年   16篇
  2022年   16篇
  2021年   6篇
  2020年   5篇
  2019年   16篇
  2018年   13篇
  2017年   11篇
  2016年   21篇
  2015年   22篇
  2014年   31篇
  2013年   24篇
  2012年   18篇
  2011年   19篇
  2010年   16篇
  2009年   14篇
  2008年   21篇
  2007年   12篇
  2006年   22篇
  2005年   8篇
  2004年   3篇
  2003年   5篇
  2002年   9篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有371条查询结果,搜索用时 78 毫秒
21.
磁驱动飞片的一维磁流体动力学数值研究   总被引:1,自引:1,他引:0  
磁驱动高速飞片技术是近年来发展的一种新型实验技术,在冲击波物理领域得到应用。该过程伴随着磁场扩散,并由此引起焦耳加热,使得飞片加载面的相状态发生变化,这决定了飞片厚度的范围。基于拉格朗日坐标系,利用磁流体动力学方程组、电阻率方程和状态方程数据库,对磁驱动铝飞片进行了一维磁流体动力学数值计算,获得了不同时刻铝飞片密度、温度的剖面分布,得到了磁场扩散速率随加载电流密度的变化关系。文章所选取的电导率方程只考虑到汽化点为止,对于等离子体形成的过程无法描述,如果要精确描述更高电流密度下的驱动过程,需考虑更为普适的电导率方程。磁场扩散速率随加载电流密度的变化存在转折点,在转折点前后可分别用两个线性关系表达式加以刻画。利用这些关系和冲击波物理相关知识,对磁压加载等熵驱动飞片实验样品厚度的选择进行了研究。  相似文献   
22.
东晨  赵尚弘  张宁  董毅  赵卫虎  刘韵 《物理学报》2014,63(20):200304-200304
刻画了奇相干光源的光子数分布特征,研究了奇相干光源下诱骗态测量设备无关量子密钥分配系统的密钥生成率与安全传输距离的关系,推导了奇相干光源下的计数率下界和误码率上界.仿真结果表明,奇相干光源光子数分布中多光子脉冲的比例低于弱相干光,可以有效提高诱骗态测量设备无关密钥分配系统的最大安全通信距离,为实用的量子密钥分配实验提供了重要的理论参数.  相似文献   
23.
文[1]得到如下定理. 定理1 如图1,△DEF是由△ABC的三条外角平分线构成的三角形.  相似文献   
24.
研究用于GaN基大功率倒装焊(Flip-chip)紫光LED(UV-LED)的高反射率p型欧姆接触的电学和光学性能。用磁控溅射的方法在GaN基LED外延片表面沉积了不同厚度Ag,Al,Au和Pd四种金属,测量了样品的反射率和透射率。结合同步辐射高强度X射线衍射和AFM对金属薄膜的晶体结构进行分析,并对表面形貌进行了观测,对由金属薄膜构成的多层膜结构及其对光反射率的作用机理进行了研究。测量结果表明,在入射光波长为400nm时,Ni/Au/Ag和Ni/Au/Al电极的反射率比Ni/Au的反射率提高了三倍。同时与p-GaN有良好的欧姆接触特性。  相似文献   
25.
将氧化石墨烯(GO)、多壁碳纳米管(MWNTs)和羧甲基壳聚糖(CMCS)超声混合后滴涂到玻碳电极(GCE)基体上得到修饰电极(MWNTs/GO/CMCS/GCE),采用循环伏安法(CV)考察NO2-和L-色氨酸(L-Trp)在修饰电极上的电化学行为。计算得MWNTs/GO/CMCS/GCE的有效面积为3.243 0×10-6cm2,电极膜表面积明显增加,加速了电子转移,有利于被测物质的吸附和富集。结果表明:NO2-(在pH 4.7磷酸盐缓冲溶液中)和L-Trp(在pH 4.0乙酸-乙酸钠缓冲溶液中)在该修饰电极上分别有明显的电催化氧化作用;两者的浓度依次在1.0×10-7~3.5×10-1 mol·L-1和1.0×10-8~2.7×10-1 mol·L-1内与其相应的氧化峰电流值之间呈线性关系,其检出限(3S/N)依次为1.2×10-8,5.0×10-8 mol·L-1。方法用于腐败生菜中NO2-含量和模拟样品中L-Trp含量的CV测定,所得测定结果分别与紫外-可见分光光度法和荧光光度法的测定结果相符。  相似文献   
26.
在相同的水热条件下,铜盐、钴盐分别和配体H2PPCA(H2PPCA=5-pyrazin-2-yl-1H-pyrazole-3-carboxylic acid)发生反应,生成了2个结构截然不同的金属有机配合物,分别是[Cu(PPCA)(H2O)]·H2O(HPU-7)和{[Co(PPCA)(H2O)]·H2O}nHPU-8)。HPU-7是由CuCl2·2H2O与配体在160℃下反应而成的,它呈现出零维的双核铜单元结构。HPU-8是由Co(NO32·6H2O与配体在160℃下反应生成的,它呈现出由双核钴单元与配体的骨架相连而成的4,4-连接的二维层结构。中心金属离子的改变导致了不同结构MOF的形成,并且它们的电化学性能研究表明它们是很好的半导体材料,它们都对亚甲基蓝(MB)具有较好的光催化效果。  相似文献   
27.
Fe3O4纳米晶的粒径控制合成、表征及其吸波性能   总被引:3,自引:0,他引:3  
采用十二烷基磺酸钠和聚乙二醇作为保护剂, 成功地制备出Fe3O4纳米晶. 通过改变实验条件, 可在10~200 nm范围内有效调控Fe3O4纳米晶的粒径. 采用X射线衍射仪、透射电子显微镜和扫描电子显微镜等对样品的微观结构、粒径和形貌进行了分析. 结果表明, 所得尖晶石型Fe3O4纳米晶粒径均匀, 形貌均为球形. 利用振动样品磁场计测量了不同粒径样品的磁性能. 结果显示, 粒径小时, 随着粒径的增加, Fe3O4的饱和磁化强度Ms逐渐增加, 但当粒径增加到80 nm时, Ms达到最大值; 随着粒径的减小, 矫顽力也随之减小. 利用矢量网络分析仪对不同粒径样品的电磁性能和吸波性能进行了研究, 结果表明, 当Fe3O4纳米晶的粒径小于100 nm时, 吸波性能良好, 其中, 粒径为20 nm的样品吸收峰的峰值在8 GHz附近达到了-32 dB.  相似文献   
28.
张宁  朱京平  宗康  李浩  强帆  侯洵 《物理学报》2016,65(7):74210-074210
通道调制型偏振成像技术是一种体积紧凑、空间分辨率高且能够实时获取全偏振信息的新型偏振成像探测技术. 但该技术目前只能实现准单色光的全偏振探测, 严重制约了其实用化. 本文首先对宽带光通道调制型偏振成像出现混叠现象的原因进行了分析, 得出载波频率是限制波段宽度的主要因素. 据此在空间频谱域上分析并推导了通道调制型偏振成像系统的光谱宽度限制判据公式, 同时通过模型仿真得到了系统的极限有效光谱范围, 与理论推导公式结果进行了对比分析, 验证了判据的准确性. 基于该判据可预测给定通道调制型偏振成像系统的有效工作波段, 同时还可为扩展系统波段宽度提供理论支撑.  相似文献   
29.
强帆  朱京平  张云尧  张宁  李浩  宗康  曹莹瑜 《物理学报》2016,65(13):130202-130202
通道调制型偏振成像系统中,焦平面上获取的信息需要通过目标偏振参量的重建才能有效提取,因而重建是目标识别、材料分析、生物医疗等技术进一步应用的前提.为了实现在非理想情况下通道调制型偏振成像系统的偏振参量精确重建,需要解决成像系统中电荷耦合器件(CCD)采样频率与频谱位置偏移对重建的影响.本文首先详细分析了频谱不发生混叠的条件:CCD采样频率应至少为4倍基频;在偏振干涉频谱位置偏移时,使用最大频谱法确定各个偏振态的载波频率,通过频移、滤波和傅里叶变换获得目标的偏振重建二维图像;最后通过计算机模拟仿真与实验分析结合的方法验证该重建方案的可行性与有效性.模拟与实验结果表明:改进后的偏振重建法得到的偏振图像与原始输入图像的均方差在0.001以下,峰值信噪比有明显的提高,且结构相似度可达到0.9以上,表明该方法获得的二维偏振态重建图像精度高,与理论偏振解调法相比具有很大的优越性.该工作希望为后续偏振探测与分析进一步的研究提供参考.  相似文献   
30.
La0.82Sr0.18MnO3 have been investigated. With grain growth, both an evident decrease of magnetization and the lattice distortions have been simultaneously observed. The phenomenon suggests a structure-coupled change of magnetism in the hole-doped manganese perovskite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号