首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用晶种生长法制备了形状均一、导电性良好的三角形金纳米片(Au TNPs),并以氧化石墨烯(GO)为载体,聚阴离子Nafion为保护剂,将其修饰在玻碳电极(GCE)表面,制得氧化石墨烯/三角形金纳米片/Nafion复合膜修饰电极(GO/Au TNPs/Nafion/GCE).利用扫描电子显微镜和原子力显微镜对纳米复合材料的形貌进行表征,采用循环伏安法(CV)和示差脉冲伏安法(DPV)探讨了L-色氨酸(L-Trp)在不同修饰电极上的电化学行为.结果表明,GO/Au TNPs/Nafion/GCE对L-Trp表现出良好的电催化氧化特性.在0.10 mol/L的PBS缓冲溶液(p H=3.5)中,该修饰电极的响应峰电流与L-Trp的浓度存在良好的线性关系,线性范围为4.000×10~(-8)~6.000×10~(-5)mol/L,检出限为1.000×10~(-8)mol/L(S/N=3).该电极具有良好的重现性、稳定性和抗干扰能力.将该电极用于猪血清样品中L-Trp的测定,回收率为93.1%~105.9%,说明该电极在健康养殖生化检测领域有潜在的应用价值.  相似文献   

2.
制备了金纳米粒子修饰玻碳电极(Au/GCE),用循环伏安法研究L-色氨酸(L-Trp)在修饰电极上的电化学行为,以及支持电解质、溶液p H、扫描速率等对L-Trp伏安响应的影响。实验表明:在p H=3.5的HAcNa Ac支持电解质中,L-Trp在Au/GCE上有一灵敏的氧化峰(Epa=0.93)。氧化峰电流与L-Trp浓度在5.0×10-7~1.0×10-4mol·L-1范围内呈良好的线性关系,相关系数为0.9990,检出限1.6×10-7mol·L-1。测得L-Trp样品平均回收率为98%。  相似文献   

3.
通过N-酰化壳聚糖(N-CTS)与多壁碳纳米管(MWNTs)复合修饰玻碳电极得到N-CTS/MWNTs/GCE电化学传感器。采用循环伏安法研究了多巴胺(DA)和槲皮素(QU)在修饰电极上电化学行为。结果表明:NCTS/MWNTs/GCE电极能显著提高DA、QU的氧化峰电流,降低其氧化峰电位。在p H分别为7.38、6.80磷酸盐缓冲溶液中,DA、QU的氧化峰电流与浓度存在线性关系,线性方程分别为:Ip(DA)=0.0397+4715.8673 c、Ip(QU)=-0.2645+256.8935 c,相关系数均大于0.997,多巴胺、槲皮素检测限分别达1.0×10-8mol·L~(-1)和1.0×10-6mol·L~(-1)。N-CTS/MWNTs/GCE电极具有较好的重现性、稳定性,相对标准偏差为1.51%。该修饰电极可用于含DA、QU成分药物的直接测定。  相似文献   

4.
采用循环伏安法(CV),由β-环糊精(β-CD)单体在玻碳电极(GCE)表面电聚合制得聚β-CD膜修饰电极(β-CD/GCE)。实验表明,β-CD/GCE对Cu2+具有明显的电催化作用,在pH=5.85的磷酸盐缓冲溶液(PBS)中,Cu2+浓度与其峰电流在4.01×10-4~1.05×10-7 mol·L-1范围内呈良好的线性关系,线性方程为:ip=-1.975c-1.336×10-4(i:A,c:mol·L-1),相关系数R=0.9981,检出限(S/N=3)为5.03×10-8mol·L-1。方法应用于实际样品测定,回收率在98.0%~103%之间。  相似文献   

5.
本研究先采用滴涂法制备了多壁碳纳米管修饰电极,然后采用电化学沉积技术从含有氧化石墨烯的溶液中制备了石墨烯(GR)/多壁碳纳米管(MWCNT)复合膜修饰电极(GR/MWCNT/GCE)。研究了亚硝酸根(NO2-)在该修饰电极上的电化学行为。结果表明,该修饰电极对亚硝酸根的电氧化具有高的催化活性。在pH 7.00的PBS缓冲溶液中,微分脉冲伏安法测定亚硝酸根的线性范围为1.0×10-7mol·L-1~1.7×10-3mol·L-1,检出限为5.0×10-8mol·L-1(S/N=3)。用该法测定了土壤中亚硝酸根的含量,结果令人满意。  相似文献   

6.
用循环伏安法制备了聚甲基红膜修饰玻碳电极(PMRE/GCE)。研究了L-色氨酸(L-Trp)在该修饰电极上的电化学行为,探讨了不同缓冲溶液、pH以及扫描速率等的影响。实验表明:在pH=5.5的HAc-NaAc支持电解质中,L-Trp在PMRE/GCE上的电化学氧化反应是一不可逆过程,于0.783V(vs.SCE)处产生一灵敏的氧化峰,峰电流大大增加。氧化峰电流与L-Trp的浓度在2.0×10-6~1.0×10-3mol/L范围内呈良好的线性关系,检出限为8.0×10-7mol/L,样品检测平均回收率为100.16%。  相似文献   

7.
将羧基化多壁碳纳米管分散在L-半胱氨酸溶液中并滴涂在玻碳电极表面.将上述电极在pH 6.9的B-R缓冲溶液中,于-1.0~2.5 V的电位范围内进行电聚合,制备了聚L-半胱氨酸/多壁碳纳米管复合修饰电极(Pol-L-Cys/MWCNTs/GCE).研究发现,邻苯二酚和对苯二酚在聚L-半胱氨酸/多壁碳纳米管复合修饰电极上分别出现了一对氧化还原峰,且两者的氧化峰电位差达101 mV,提出了用微分脉冲伏安法同时测定邻苯二酚和对苯二酚的方法.氧化峰电流与邻苯二酚和对苯二酚的浓度在1.0×10-5~1.0×10-3mol·L-1呈线性关系,检出限(3S/N)均达1.0×10-5mol·L-1.修饰电极用于模拟样品中邻苯二酚和对苯二酚的测定,回收率在82.0%~107.0%之间.  相似文献   

8.
用循环伏安法(CV)研究了聚四氨基镍酞菁膜修饰电极(p-NiTAPc/GCE)对甲巯咪唑的电催化氧化行为,在pH=2的磷酸盐缓冲溶液(PBS)中,与未修饰玻碳电极(GCE)相比,甲巯咪唑在p-NiTAPc/GCE上的氧化峰电位(Epa)负移157mV左右,氧化峰电流(Ipa)变为原来的2.6倍多,在2.0×10-5~1.0×10-3 mol·L-1范围内有良好的线性关系,回收率在90%以上,同时,p-NiTAPc/GCE对甲巯咪唑的电催化氧化活性有很高的稳定性。  相似文献   

9.
本文采用循环伏安法(CV)和差分脉冲伏安法(DPV),研究了呋喃唑酮(FZ)在多壁碳纳米管修饰玻碳电极(MWNTs/GCE)上的电化学行为。对影响该修饰电极电流大小的主要条件,如底液的pH值、富集电位和富集时间等进行了优化。结果表明:FZ在MWNTs/GCE上呈现不可逆的还原峰。与裸电极相比,FZ在修饰电极上的还原峰电流明显增大。在最佳的实验条件下,其峰电流随着FZ浓度的增加而增大,在4.9×10-7~5.9×10-5 mol.L-1范围内成线性关系,检测限低至8.0×10-8 mol.L-1。该修饰电极对FZ的测定表现出良好的重现性和稳定性,可用于药物制剂中FZ的定量测定。  相似文献   

10.
将Hummers法制备的单层氧化石墨烯(GO)与多壁碳米管(MWCNT)超声混合,得到性能稳定的GO/MWCNT复合纳米材料。以此纳米材料修饰玻碳电极,构建了一种新型L-色氨酸(L-Trp)电化学传感器。采用透射电镜(TEM)、循环伏安(CV)和交流阻抗(EIS)等方法对修饰电极进行了表征;并研究了L-Trp在修饰电极上的电化学行为和动力学性质。结果表明,L-Trp在GO/MWCNT修饰电极有一个灵敏的氧化峰(Epa=0.956 V);该氧化反应是一个2电子和2质子参与的不可逆过程,电极过程受到吸附步骤控制,其表观标准速率常数为9.613×10-4cm/s;利用该氧化峰可进行痕量L-Trp的检测。在pH 6.0磷酸盐缓冲液中,当富集电位为0.600 V,富集时间为25 s,扫速为100 mV/s时,L-Trp氧化峰电流与其浓度在1.0×10-6~1.0×10-4mol/L范围内呈良好线关系,相关系数为0.995,检出限可达3.50×10-7mol/L;所制备的电化学传感器稳定性较好,用于人体血清中L-Trp的现场快速检测,加标回收率为97.8%~104.2%。  相似文献   

11.
提出了以固体辣根过氧化物酶(HRP)对过氧化氢氧化邻苯二胺的催化作用为基础的测定HRP及其标记物的电化学方法.测定中以Au-Pt/PAN/GCE为工作电极,并详细叙述其制备过程.将一定浓度的HRP按规定方法固定在上述修饰电极上制得HRP/Au-Pt/PAN/GCE修饰电极,将此电极浸入含5.0×10-3mol·L-1邻苯二胺及2.5×10-3mol·L-1过氧化氢的磷酸盐缓冲溶液(pH 5.0)中,反应10 min后将电极取出,记录溶液中酶催化反应产物的方波伏安峰及峰电流.结果表明:酶催化反应前,底物在工作电极上于-0.488 V(vs.SCE)处有明显的还原峰,在酶催化反应后,在-0.584 V处出现一个更大的还原峰,电位负移160 mV,且峰电流明显增大.峰电流值(Ip)与修饰在Au-Pt/PAN/GCE电极上的HRP的含量在1.0×10-2~2.0×102μg·L-1之间呈线性关系,方法的检出限(3S/N)为3.0 ng·L-1.  相似文献   

12.
利用多电位脉冲沉积法制备纳米金修饰电极(AuNPs/GCE),再将L-精氨酸电聚合在AuNPs/GCE表面,制备出一种新型的聚L-精氨酸/AuNPs/GCE。采用原子力显微镜对上述电极进行了表征,并研究了多巴胺在其上的电化学行为。结果表明:在pH 5.7的磷酸盐缓冲溶液中,聚L-精氨酸/AuNPs/GCE对多巴胺的氧化有良好的电催化作用,多巴胺的氧化还原反应是受吸附控制的准可逆过程。多巴胺的浓度在8.0×10-7~1.0×10-4 mol·L-1范围内与其氧化峰电流呈线性关系,检出限(3S/N)为1.0×10-7 mol·L-1。加标回收率在96.5%~104%之间。对3.0×10-5 mol·L-1多巴胺溶液连续测定7次,峰电流的相对标准偏差为2.6%。  相似文献   

13.
用聚二烯丙基二甲基氯化铵(PDDA)作为一种绿色还原剂还原氧化石墨(GO)制得石墨烯(GR),并进一步制得GR/PDDA复合物。将0.5g·L~(-1) GR/PDDA悬浮液均匀滴涂于经预处理的玻碳电极(GCE)表面,于红外灯下照射烘干,即得GR/PDDA/GCE复合修饰电极。用傅里叶红外光谱仪对所合成的复合物进行表征,证实了合成是成功的。用循环伏安法表征了该修饰电极的电化学特性,证明了GCE表面的GR/PDDA镀层不仅增加了电极的表面积,而且加速了电荷传导速率。在pH 6.0的磷酸氢二钠-柠檬酸缓冲溶液中,研究了尼莫地平(NM)和硝苯地平(NF)在复合修饰电极上的电化学行为,结果表明,两者依次在-0.444,-0.737V处出现较灵敏的还原峰,并且NM和NF的浓度在1.0×10~(-6)~1.4×10~(-4) mol·L~(-1),4.0×10~(-7)~2.6×10~(-4) mol·L~(-1)内分别与其还原峰电流呈线性关系。检出限(3s)分别为3.9×10-7 mol·L~(-1)和5.6×10-8 mol·L~(-1)。用循环伏安法可实现人血清中此2种血管疾病治疗药物的同时测定。  相似文献   

14.
以部分电化学还原的氧化石墨烯(pErGO)修饰的玻碳电极(GCE)作为工作电极(pErGO/GCE),用于苦参碱(MT)含量的电化学测定。在活化好的GCE上滴涂氧化石墨烯(GO),用恒电位法在-0.75 V下还原GCE表面的GO 200 s,得到的电极即为pErGO/GCE。以0.1 mol·L~(-1) NaH_2PO_4-Na_2HPO_4缓冲溶液(pH 7.0)作为电解质,铂丝作为对电极,Ag/AgCl作为参比电极,在开路电位下富集样品中的MT 120 s,采用差分脉冲伏安法(DPV)测定MT含量。结果显示:MT的浓度在8.0×10~(-6)~1.0×10~(-4)mol·L~(-1)内与其对应的氧化峰峰电流呈线性关系,检出限(3S/N)为4.0μmol·L~(-1)。用修饰电极重复测定MT标准溶液5次,所得测定值的相对标准偏差(n=5)为1.8%。对实际样品进行加标回收试验,回收率为94.8%~104%。方法用于实际样品分析,MT的测定值与标示值的相对偏差为-5.9%。  相似文献   

15.
应用电化学还原法自制的锑膜修饰玻碳电极(GCE)研究了多巴胺(DA)和抗坏血酸(AA)在此修饰电极上的电化学性质.DA和AA在此修饰电极上的氧化电位依次为0.676 V和0.360 V,两者相差316 mV.此电位差值远大于两者在裸GCE电极上的差值(136 mV).据此,可用锑膜修饰的GCE,用示差脉冲伏安法同时测定DA和AA.测定DA和AA的线性范围分别为6.80×10-7~1.33×10-2,2.60×10-6~1.20×10-3mol·L-1,方法的检出限依次为1.50×10-7,6.70×10-7mol·L-1.应用所提出的方法分析了DA的针剂和AA的片剂样品,所得结果与标示值相符,并测得方法的回收率在97.9%~99.3%之间.  相似文献   

16.
用循环伏安法制备银掺杂聚L-精氨酸修饰玻碳电极(Ag-PA/GCE),研究了芦丁和抗坏血酸在该修饰电极上的电化学行为,建立了芦丁和抗坏血酸同时测定的新方法。在pH=2.5的磷酸盐缓冲溶液(PBS)中,于140mV·s-1的扫速下,芦丁产生一对氧化还原峰,其氧化峰电位为0.552V,还原峰电位为0.491V;抗坏血酸产生一个氧化峰,峰电位为0.281V。芦丁和抗坏血酸的△Epa=0.271V,用氧化峰不需分离可直接对芦丁和抗坏血酸进行同时测定,在最佳条件下,芦丁和抗坏血酸的线性范围分别5.0×10-7~2.0×10-5 mol·L-1和2.5×10-5~5.0×10-3 mol·L-1,检出限分别为1.0×10-7 mol·L-1和1.0×10-5 mol·L-1。方法可用于复方芦丁片中芦丁和抗坏血酸的同时测定。  相似文献   

17.
采用一锅法制备聚多巴胺-纳米金修饰玻碳电极(PDA-AuNPs/GCE),用扫描电子显微镜(SEM)对修饰电极进行表面形貌分析,并研究芦丁在该修饰电极上的电化学行为。实验表明,PDA-AuNPs/GCE对芦丁有较好的电催化氧化性能,芦丁的氧化峰电流与其浓度在1.0×10-6~1.0×10-4mol·L-1范围内成线性关系,检测下限为2.3×10-7mol·L-1(S/N=3)。该修饰电极可用于复方芦丁片中芦丁含量的检测,效果良好。  相似文献   

18.
首先在非水介质中通过电化学氧化将L-酪氨酸以C-N键共价键合在玻碳电极表面,形成L-酪氨酸接枝单层膜.再在L-酪氨酸功能化的玻碳电极上对邻苯二胺进行电化学聚合,从而制备了聚邻苯二胺/L-酪氨酸复合膜修饰玻碳电极(聚-o-PD-Tyr/GCE).研究发现聚-o-PD-Tyr/GCE在pH 6.8的磷酸缓冲溶液(PBS)中对抗坏血酸的电化学氧化具有催化作用,其氧化电位为0.35 V,比在裸玻碳电极上(0.58 V)降低了0.23 V,峰电流也明显升高.抗坏血酸在修饰电极上响应电流与其浓度在2.5×10-4~1.5×10-3mol·L-1范围内呈线性关系,检出限(3s/k)为43.64μmol·L-1.经修饰的电极保存在0.1 mol·L-1PBS中,可至少稳定5d.对5×10-4mol·L-1抗坏血酸溶液连续测定10次,测得此电极的相对标准偏差为3.2%.  相似文献   

19.
利用静电纺丝法合成碳纳米纤维(CNFs),并用电沉积技术在其表面负载金纳米粒子(AuNPs)而得到负载AuNPs的CNFs(AuNPs-CNFs),研究氧氟沙星(OFL)在AuCNFs修饰玻碳电极(AuNPs-CNFs/GCE)上的电化学行为,建立定量测定OFL含量的电化学分析新方法.采用循环伏安(CV)法,在0.10mol·L-1的磷酸盐缓冲溶液(pH=7.0)中,OFL在AuCNFs/GCE上于+0.83V处出现明显的氧化峰,其氧化峰电流是裸电极上的2.5倍.用电流-时间曲线法测得OFL氧化峰电流与其浓度在1.0×10-6~2.0×10-4 mol·L-1呈线性关系,检测限(S/N=3)为3.0×10-7 mol·L-1.采用本方法对OFL滴眼液中OFL进行加标回收率测定,回收率在96.8%~98.7%之间.AuNPs-CNFs/GCE对OFL的电化学氧化具有良好的电催化作用,该方法可用于OFL滴眼液中OFL的加标回收率测定,结果令人满意.  相似文献   

20.
将石墨烯涂覆在玻碳电极表面,制备了石墨烯/玻碳电极(Gr/GCE)。用循环伏安法(Cyclic voltammetry,CV)将组氨酸修饰在石墨烯/玻碳电极表面,制成了聚组氨酸/石墨烯玻碳电极(polyHiS/Gr/GCE)。用该修饰电极对曲克芦丁水解物进行电化学检测,实验表明,在最优条件下,该修饰电极对曲克芦丁水解物有显著的电催化作用,其氧化峰电流与其浓度在2.0×10-6~4.0×10-4mol·L-1范围内呈良好的线性关系,相关系数为R=0.9996,检出限为1.25×10-6mol·L-1。此方法可应用于实际样品的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号