首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   3篇
  国内免费   9篇
化学   15篇
晶体学   2篇
力学   3篇
综合类   1篇
数学   3篇
物理学   12篇
  2023年   3篇
  2022年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  1996年   3篇
  1992年   1篇
排序方式: 共有36条查询结果,搜索用时 0 毫秒
21.
应用流动式等温精密微量热技术测定了298.15, 303.15, 308.15, 313.15和318.15 K 5个不同温度下L-胱氨酸在一种强酸性和两种强碱性溶剂中的稀释焓. 根据改进的McMillan-Mayer理论对所测数据进行关联, 得到了表观摩尔稀释焓对浓度变化的经验方程和各级焓相互作用系数(h2)和二阶熵相互作用系数(s2), 根据溶质-溶质, 溶质-溶剂等弱相互作用对二阶焓、熵相互作用系数进行了讨论. 结果表明: 对在水相中胱氨酸的二阶相互作用而言, 二价阳离子比二价阴离子具有较强的介质效应; 不同温度下的二阶焓相互作用系数与温度成线性关系, 因而二阶熵相互作用系数在实验温度范围内为一常量.  相似文献   
22.
甲酰胺类化合物是重要的药物化学中间体,也是很多生物活性化合物的重要组成部分,被广泛应用于医药和农药等生产行业.为了研究4-羟氨基-α-吡喃酮甲酰胺类似物活性与其分子结构的定量构效关系,根据分子中原子的特性和连接性,提出了一种新的分子结构指数——价键指数B,并计算了42个4-羟氨基-α-吡喃酮甲酰胺类似物的电性距离矢量,筛选其中M14,M77和M78作为理论结构描述符,将其与价键指数B结合,与4-羟氨基-α-吡喃酮甲酰胺类似物活性进行回归分析,将4种参数作为神经网络法的输入层参数,采用4-4-1的神经网络结构,构建了一种相关性良好的预测生物活性的神经网络模型,模型的总相关系数Rt为0.942.预测的活性值与其实验值(pEC50)的相对平均误差仅为1.26%.利用该神经网络模型设计了10种新的活性大的4-羟氨基-α-吡喃酮甲酰胺类似物分子,并计算得到活性预测值.结果表明,4-羟氨基-α-吡喃酮甲酰胺类似物生物活性与价键指数、电性距离矢量具有良好的非线性关系.  相似文献   
23.
通过电纺丝法结合原位还原及原位氧化反应, 成功制备了均匀负载Ag/AgCl复合纳米粒子/聚丙烯腈(PAN)复合纳米纤维膜. 首先利用电纺丝技术制备了PAN/AgNO3复合纳米纤维, 然后用乙二醇将硝酸银还原成银纳米粒子, 最后采用三氯化铁溶液对材料进行原位氧化. 所得纤维膜材料可以作为高效的可见光催化剂, 具有高可见光利用率, 优异的柔性和高光催化动力学等特性.  相似文献   
24.
CH4与CO_2干重整反应对于环境保护和天然气资源的合理利用具有重要意义。SiO_2和Al_2O_3是适用于甲烷干重整反应的两种典型的催化剂载体。为了阐明这两种载体对催化剂性能的影响,本研究采用等体积浸渍法制备了Ni/Al_2O_3和Ni/SiO_2催化剂,并利用BET、TEM、H2-TPR、XRD、TG和Raman等技术对还原和反应后的催化剂进行了表征。结果表明,由于载体的性质不同,Ni基催化剂在甲烷干重整中的催化性能也不同。Ni/SiO_2催化剂的初始活性较高,但由于其金属-载体相互作用较弱,催化稳定性较差,在800℃下反应15 h其催化活性急剧下降;较弱的金属-载体相互作用使得Ni/SiO_2催化剂上的Ni颗粒较大,有利于积炭前驱物种的生成,导致催化剂快速失活。而对于Ni/Al_2O_3催化剂,金属-载体相互作用较强,Ni颗粒较小,但由于Ni与Al_2O_3生成了NiAlxOy物种,有效活性位减少,其催化活性相对较低,但催化稳定性较好,干重整反应进行50 h其活性保持稳定; Ni与Al_2O_3之间较强的相互作用有利于形成小且稳定的Ni粒子,能减少积炭,因而具有优异的催化稳定性。  相似文献   
25.
二过碘酸合银[Ag(Ⅲ)]在氧化还原反应中为双电子转移反应,没有中间自由基产生,不能引发丙烯腈聚合[1,2].我们发现,Ag(Ⅲ)与不同还原剂组成氧化还原体系,在一定条件下,能引发烯类单体聚合.本文研究了Ag(Ⅲ)为氧化剂、丙烯酰胺(AM)为还原剂引发AM聚合反应的动力学,得到了聚合速率方程和表观活化能,测得了聚合物分子量M,探讨了引发机理.  相似文献   
26.
提出了一种基于光切法实时测量移动车厢中煤堆体积的三维测量方案。采用相邻帧差法实时检测运动车厢的边缘。当车厢前边缘到达检测位置时,开始提取光刀中心获取一系列平行截面的轮廓线;当车厢后边缘到达检测位置时,该节车厢检测完成,然后根据一系列截面轮廓线计算整节车厢的煤堆体积。实验结果表明,所提出的方法具有计算精度高,结构简单,抗光照能力强等特点。  相似文献   
27.
为了能够在不停输油气工况下获得在役管道材料的弹塑性力学性能, 提出了一种人工智能BP (back-propagation)神经网络、小冲杆试验与有限元模拟相结合,通过确定材料真应力-应变曲线从而获得材料弹塑性力学性能的方法. 首先,通过系统改变Hollomon公式中的参数$K$, $n$值,获得457组具有不同弹塑性力学性能的假想材料本构关系, 其次,将得到的本构关系代入经试验验证的含有Gurson-Tvergaard-Needleman(GTN)损伤参数的小冲杆试验二维轴对称有限元模型,通过有限元计算得到了与真应力-应变曲线一一对应的457条不同假想材料的载荷-位移曲线,最终将两组数据作为数据库输入BP神经网络进行训练,建立了同种材料小冲杆试验载荷-位移曲线与真应力-应变曲线之间的关联关系.通过此关联关系,可利用试验得到的小冲杆载荷-位移曲线获取在役管道钢的真应力-应变曲线,从而确定其弹塑性力学性能.通过对比BP神经网络得到的X80管道钢真应力-应变曲线与单轴拉伸试验的结果以及引用现有文献中不同材料的试验数据对此关系进行验证,证明了该方法的准确性与广泛适用性.   相似文献   
28.
为了能够在不停输油气工况下获得在役管道材料的弹塑性力学性能,提出了一种人工智能BP (backpropagation)神经网络、小冲杆试验与有限元模拟相结合,通过确定材料真应力-应变曲线从而获得材料弹塑性力学性能的方法.首先,通过系统改变Hollomon公式中的参数K, n值,获得457组具有不同弹塑性力学性能的假想材料本构关系,其次,将得到的本构关系代入经试验验证的含有Gurson-Tvergaard-Needleman(GTN)损伤参数的小冲杆试验二维轴对称有限元模型,通过有限元计算得到了与真应力-应变曲线一一对应的457条不同假想材料的载荷-位移曲线,最终将两组数据作为数据库输入BP神经网络进行训练,建立了同种材料小冲杆试验载荷-位移曲线与真应力-应变曲线之间的关联关系.通过此关联关系,可利用试验得到的小冲杆载荷-位移曲线获取在役管道钢的真应力-应变曲线,从而确定其弹塑性力学性能.通过对比BP神经网络得到的X80管道钢真应力-应变曲线与单轴拉伸试验的结果以及引用现有文献中不同材料的试验数据对此关系进行验证,证明了该方法的准确性与广泛适用性.  相似文献   
29.
朱诚  陈仙辉  王城  宋明  夏维东 《物理学报》2023,(12):201-212
计算了广温度范围(300—30000 K)和广压力范围(0.1—10 atm, 1 atm=101.325 k Pa)下,不同混合物比例、碳和硅蒸气浓度的局域热力学平衡(LTE)和化学平衡(LCE)的氩-碳-硅等离子体组分、热力学性质和输运系数.等离子体气相平衡组分使用质量作用定律计算,同时凝聚相组分采用相平衡的方法计算.输运系数的计算包括黏度、电导率和热导率,使用拓展到高阶近似的Chapman-Enskog方法.采用文献中较新的数据得到了较为准确的碰撞积分,导出了Ar-C-Si等离子体的输运系数.结果表明,在相变温度以下,凝聚态物种的引入导致Ar-C-Si等离子体的热力学性质、输运系数与纯Ar等离子体接近,在相变温度点则会产生不连续点.压力、碳/硅蒸气浓度和比例对等离子体热力学性质和输运系数具有较大影响.最终计算值与文献数据对比符合良好,有望为氩-碳-硅等离子体传热流动数值模拟提供基础数据.  相似文献   
30.
为了满足规模化太阳能热发电高温传热蓄热和工业余热回收利用的要求,分析并设计了NaCl-CaCl_2-MgCl_2三元熔盐体系作为传热蓄热介质。在已有的二元相图的基础上通过共形离子溶液(conformal ionic solution,CIS)模型模拟计算获得计算相图,根据计算相图所预测的低共熔点配比制样,采用热重差热联用分析仪(TG-DSC)对样品的熔点、相变潜热进行了表征,采用高温静态法对熔盐的稳定性进行了初步分析。结果表明:计算相图预测的低共熔点(424℃)与测试结果(428.5℃)基本一致,该熔盐相变潜热高达到191.7 J/g,熔盐在低于600℃下较稳定,适合作为高温潜热蓄热材料。研究为氯化物熔盐相图和热物性提供了宝贵的数据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号