首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1456篇
  免费   266篇
  国内免费   1639篇
化学   2705篇
晶体学   146篇
力学   20篇
综合类   24篇
数学   13篇
物理学   453篇
  2024年   31篇
  2023年   140篇
  2022年   154篇
  2021年   176篇
  2020年   158篇
  2019年   130篇
  2018年   102篇
  2017年   125篇
  2016年   101篇
  2015年   126篇
  2014年   209篇
  2013年   238篇
  2012年   138篇
  2011年   175篇
  2010年   119篇
  2009年   133篇
  2008年   99篇
  2007年   180篇
  2006年   148篇
  2005年   109篇
  2004年   102篇
  2003年   106篇
  2002年   66篇
  2001年   85篇
  2000年   56篇
  1999年   15篇
  1998年   38篇
  1997年   16篇
  1996年   17篇
  1995年   12篇
  1994年   10篇
  1993年   7篇
  1992年   4篇
  1991年   9篇
  1990年   6篇
  1989年   11篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1959年   1篇
排序方式: 共有3361条查询结果,搜索用时 15 毫秒
101.
采用共沉淀法和热分解法合成了具有核壳结构的MnO2@MgO微球。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等手段对材料进行表征,结果发现包覆MgO不改变MnO2的结构,包覆层由纳米颗粒组成,厚度约为50 nm。电化学性能结果显示,包覆后材料的放电比容量明显提高,在100 mA·g^-1电流密度下,最大放电比容量为274.3 mAh·g^-1,比未包覆材料提高了12.8%。在1000 mA·g^-1电流密度下经过500次循环后,包覆后材料的放电比容量保持率高达84.1%,表现出优异的循环稳定性。MgO包覆层的存在避免了MnO2与电解液之间直接接触,抑制了电极材料在充放电过程中锰的溶解,从而显著提高MnO2的循环性能。  相似文献   
102.
气候变化和化石燃料枯竭等问题将促进新型绿色能源的开发和利用。因此,高效率、低成本、安全的储能系统,得到了越来越多的关注和研究。在各类储能系统中,二次电池是存储电能、为电子设备供电的最理想选择。目前,锂离子电池(LIBs)的应用最广泛。然而,地球上锂资源的短缺和分布不均造成的成本较高,急需研究和开发其他高性能的新型二次电池。钠元素具有地壳中储量丰富、均匀且与锂具有相似化学性质等优势,使得钠离子电池(SIBs)成为了取代LIBs最有前景的备选二次电池之一。然而,钠离子的体积较大、离子传导动力学更缓慢、导电性更差等问题,限制了SIBs高性能的实现,这是目前研究的难点和重点。此外,铁具有储量丰富、环境友好的特点,其在SIBs中的应用引起了电池领域科研工作者的广泛关注。因此,寻找良好的铁基正极材料成为SIBs高性能电极材料开发的一个重要研究方向。本综述对近年来SIBs铁基正极材料方面的研究进展进行了总结,并按照聚阴离子型化合物、过渡金属氧化物、普鲁士蓝及类似物和氟化物分类,进行了系统的阐述和分析。  相似文献   
103.
在共沉淀过程中添加表面活性剂聚乙二醇(PEG)或聚乙烯吡咯烷酮(PVP)分别合成类球形Ni_(0.80)Co_(0.15)Al_(0.05)(OH)_2前驱体,再与氢氧化锂(LiOH·H_2O)氧化煅烧得到LiNi_(0.80)Co_(0.15)Al_(0.05)O_2(NCA)三元正极材料。利用X射线衍射(XRD)、扫描电镜(SEM)、透射电子显微镜(TEM)、循环伏安(CV)、交流阻抗(EIS)和充放电循环测试等对材料的结构、形貌、电化学性能等进行表征。结果表明:PEG和PVP的添加不影响材料中Ni、Co和Al元素的比例,能够促进一次晶粒长大和提高振实密度,能够促进正极材料层状结构发育进而提高正极材料的电化学性能。添加PEG、添加PVP和未添加表面活性剂合成正极材料的振实密度分别为2.07、1.86和1.40 g·cm~(-3),在0.2C充放电过程中首次放电比容量分别为210.8、188.9和173.0 mAh·g~(-1),以0.2C充电1C放电循环100次后电池容量保持率分别为78.8%、93.2%和82.7%,添加PEG和PVP的NCA材料表现出良好的电化学性能。  相似文献   
104.
通过简便的两步直接固相反应,即在室温下的固相自组装反应制备Ni席夫碱配合物前驱体,然后通过高温固相热解碳化和硒化反应,原位制备了N,Se共掺杂碳限域的NiSe纳米晶复合物。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)和热重分析(TGA)等表征技术分别对其物相、形貌结构、组分和含量等进行分析,并通过循环伏安、恒电流充放电和电化学阻抗谱等方法测试其电化学储钠性能。研究结果表明,复合物中NiSe粒子的平均尺寸为100 nm,被均匀限域在N,Se共掺杂的碳基体中;得益于该结构的优势,复合物作为钠离子电池负极材料时,在0.1 A·g~(-1)的电流密度下充放电循环100次后仍保持291 mAh·g~(-1)的可逆充电比容量,保持了首圈充电比容量的88%。同时,在5 A·g~(-1)的电流密度下,可逆充电比容量为197 mAh·g~(-1)。  相似文献   
105.
锂硫电池被认为是最有发展潜力的新型多电子反应的二次电池体系之一.单质硫与锂反应的理论比容量为1675 mA h g?1,质量比能量达2600 W h kg?1,远远高于现行的传统锂离子二次电池材料.同时硫又具有来源丰富、环境友好等优点.然而,仍然有许多问题制约了锂硫电池的发展与广泛应用.本文综述了近年来锂硫电池正极材料的研究进展.  相似文献   
106.
锂离子电池的有机正极材料由于具有比容量高、环境友好和廉价等优点,近年来成为研究的热点.但是,有机电极材料在液态电解液中的溶解流失易导致其容量迅速衰减,严重限制了它们的实际应用.本工作基于聚(甲基丙烯酸酯)/聚乙二醇的准固态电解质,考察了以柱[5]醌为正极的准固态锂二次电池的电化学性能.结果显示,柱[5]醌正极不仅保持了高容量的特性(首次放电容量410 mA h/g),并且循环寿命得到了有效提高.0.2 C下循环100周后,电极的容量保持率为88.5%,显示了柱[5]醌在高比能量准固态锂离子电池中的应用潜力.  相似文献   
107.
采用水热法制备了系列富锂尖晶石型正极材料Li2+4xMn0.6+2xNi0.6-6xCr0.8O4(x=1/30,1/20,1/15,1/12),通过X射线衍射(XRD)、电感耦合等离子体-原子发射光谱(ICP-AES)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)、拉曼光谱、循环伏安(CV)和充放电测试等手段对其结构及电化学性能进行表征.结果表明,所制备的系列材料为富锂型高电压尖晶石结构正极材料,该系列样品在4.7 V左右有放电平台.x=1/15和x=1/12时,样品中的Cr为+3价,没有观测到Cr6+.随着x值的增大,样品中Li离子与过渡金属离子的混排减小,样品的充放电比容量逐渐增大,且2.7 V处的放电平台容量也增加.当x=1/12时,样品具有较好的充放电比容量和倍率特性,首次放电比容量为107.3 mA·h/g,20次循环后容量保持率为84.9%.  相似文献   
108.
江清柏  李胜良  汤旺  梁波 《化学通报》2014,77(9):893-893
聚合物锂离子电池作为储能装置在电子产品中具有广泛的应用前景。电极/聚合物电解质(E/P)界面相容性是影响聚合物锂离子电池电导率、安全性、机械性能的重要影响因素之一。研究E/P界面的电化学反应及形成机理,是解决相容性问题的关键。本文综述了近年来有关聚合物锂离子电池E/P界面相容性及相关研究技术的进展,并对聚合物锂离子电池界面相容性的相关研究进行了展望。  相似文献   
109.
 一种新型的基于盐水和淡水的熵不同的电池,可能是巨大的可再生能源。斯坦福大学的崔义(Yi Cui,译音)与他的同事用钠锰氧化物(Sodium Manganese Oxide)的纳米棒电极(能有选择地吸收和释放钠离子)及银电极(能有选择地吸收和释放氯化物离子),把电极放在淡水中,电极就充电,然后,把电极放在海水中,电能就释放出来。
无限次重复这个过程,每一次循环都有一点能量增益,效率高达74%。这样的电池可以从淡水和海水自然混合的地方,产生全球能量消费量的13% 的电能。  相似文献   
110.
Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn204 are investigated. Compared with the micro-sized LiMn2O4, the nano-LiMn2O4 possesses a high initial capacity (120 mAh/g) at a discharge rate of 0.2 C (29.6 mA/g). The nano-LiMn2O4 also has a good high-rate discharge capability, retaining 91% of its capacity at a discharge rate of 10 C and 73~ at a discharge rate of 40 C. In particular, the nano-LiMn2O4 shows an excellent high-rate pulse discharge capability. The cut-off voltage at the end of 50-ms pulse discharge with a discharge rate of 80 C is above 3.40 V, and the voltage returns to over 4.10 V after the pulse discharge. These results show that the prepared nano-LiMn2O4 could be a potential cathode material for the power sources with the capability to deliver very high-rate pulse currents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号