首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20821篇
  免费   4611篇
  国内免费   10531篇
化学   15742篇
晶体学   770篇
力学   1691篇
综合类   796篇
数学   8996篇
物理学   7968篇
  2024年   120篇
  2023年   649篇
  2022年   701篇
  2021年   802篇
  2020年   670篇
  2019年   798篇
  2018年   560篇
  2017年   828篇
  2016年   865篇
  2015年   937篇
  2014年   1907篇
  2013年   1641篇
  2012年   1683篇
  2011年   1763篇
  2010年   1788篇
  2009年   1783篇
  2008年   1921篇
  2007年   1747篇
  2006年   1684篇
  2005年   1722篇
  2004年   1528篇
  2003年   1493篇
  2002年   1174篇
  2001年   1151篇
  2000年   880篇
  1999年   792篇
  1998年   690篇
  1997年   643篇
  1996年   514篇
  1995年   521篇
  1994年   378篇
  1993年   313篇
  1992年   338篇
  1991年   286篇
  1990年   262篇
  1989年   214篇
  1988年   59篇
  1987年   56篇
  1986年   32篇
  1985年   31篇
  1984年   14篇
  1983年   14篇
  1982年   4篇
  1981年   2篇
  1980年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
本研究采用溶剂热法,在泡沫镍(NF)基底上原位合成出Fe掺杂的硒化镍和硫化镍复合材料(Fe-NiSe@NiS/NF)。得益于Fe掺杂优化的电子结构、NiSe和NiS间的协同效应以及高效的电荷转移速率,Fe-NiSe@NiS/NF在1 mol/L KOH溶液中表现出优异的OER性能。在过电位为330 mV时可实现电流密度150 mA/cm2,且电压在稳定40 h后没有发生显著改变。  相似文献   
102.
规律间隔成簇短回文重复序列及相关蛋白9(CRISPR/Cas9)系统的基因编辑技术为哺乳细胞基因组的精准修饰与编辑研究提供了高效、快捷的工具,但其化学生物学应用依然面临着CRISPR基因编辑工具Cas9蛋白和g RNA的细胞及活体递送等问题.近年来,研究人员通过开发多种非病毒递送载体,实现了编码CRISPR/Cas9基因编辑工具的DNA和信使RNA(mRNA)以及Cas9/gRNA核糖核蛋白(RNP)复合物的递送,并应用于靶基因的化学修饰与编辑调控.本文主要概述了近期CRISPR/Cas9基因编辑递送的研究进展,并对其化学生物学应用前景进行了展望.  相似文献   
103.
用石墨烯和Co(CH3COO)2·4H2O作为原料,利用超声辅助法合成了锂离子电池的负极材料CoO纳米颗粒/中空石墨烯纳米纤维复合物.采用X射线衍射(XRD)确定材料的物相组成,采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察材料的表面形貌和微观结构,采用X射线光电子能谱(XPS)确定材料的价态结构.采用循环伏安、恒电流充放电和交流阻抗谱表征材料的电化学性能.结果显示,在100 mA/g的电流密度下,循环了160次后,可逆容量仍超过800 mA/g,库仑效率保持在99%以上.该材料优异的电化学性能主要归因于石墨烯的中空纤维结构,中空内部可以容纳电解液,能直接将离子输送到颗粒表面,实现了离子的快速传输;二维中空纤维搭建成三维网络结构,实现了三维电子传导网络.  相似文献   
104.
采用多周期的电化学循环伏安(CV)法在泡沫镍(NF)上一步制备了镍基纳米材料修饰电极(Ni(OH)2/NF)用于α-糖苷酶抑制剂的酶抑制活性评价,并基于此建立了一种简便的中药糖苷酶抑制剂筛选方法。采用X射线粉末衍射仪和扫描电镜表征修饰电极表面的结构和形貌;采用CV法和计时电流法测试电极的电化学性能。结果表明,Ni(OH)2/NF传感器检测复杂酶体系中的葡萄糖具有良好的电化学响应,灵敏度高达3222μA·mmol/(L·cm2),线性范围为3.0~6000μmol/L,检出限低至0.9μmol/L (S/N=3)。采用临床降糖药物阿卡波糖验证了此传感器用于α-糖苷酶活性检测的可行性;并将传感器应用于莲须提取液的酶抑制效果评价,发现莲须具有一定的α-糖苷酶抑制活性,其半数抑制浓度(IC50)为3.31 g/L。本研究结果表明,研制的传感器适用于α-糖苷酶抑制活性分析,为天然降糖药物筛选提供了一种新方法。  相似文献   
105.
活菌含量和上消化道耐受性是益生菌产品的两个重要指标,共同影响最终定植于人体肠道的活菌数,准确评估这两个指标对于消费者选择产品和生产者提升产品质量具有重要的指导意义。基于本研究组研发的纳米流式检测技术(Nano-flow cytometry, nFCM)在单颗粒水平对细菌进行高灵敏度、高通量分析的独特优势,本研究利用SYTO 9和碘化丙啶(Propidium iodide, PI)两种核酸染料共染的方法标记总菌和识别死菌,对益生菌产品的活菌含量及其经模拟胃液(Simulated gastric juice, SGJ)、肠液(Simulated intestinal juice, SIJ)或上消化道消化处理后的益生菌活性进行测定,从而实现对益生菌产品的细菌活性及其上消化道耐受性的定量评估。本研究对18款益生菌产品(包括16款粉末冲剂和2款胶囊产品)的活菌含量及上消化道耐受性进行考察,结果表明,18款产品的活菌含量均大于1010cells/package,平均活菌比例为61.7%,均符合国际标准(107cfu/g),但是其中有一款产品未达到其活菌含量的标注值。其次,使用pH=3的SGJ和胆盐...  相似文献   
106.
手性羰基化合物是天然产物和药物中的重要结构单元,也是反应性最为丰富的重要合成中间体.过渡金属催化不对称酰基化反应是构建该重要结构单元的高效方法之一,近些年来,具有独特催化活性的丰产金属镍催化剂也被广泛应用于不对称羰基化合物的合成.综述了近些年来镍催化不对称酰基化反应领域的新研究进展,主要包括镍催化不对称烷基-酰基偶联反应、烯烃不对称氢酰基化反应以及烯烃不对称酰基官能团化反应等.  相似文献   
107.
陈凤娟  刘罗  张子露  曾伟 《有机化学》2023,(10):3454-3469
硅杂化合物广泛存在于药物分子和具有特殊用途的功能材料中.与其同主族的全碳母体化合物相比,通常硅元素的存在赋予了相应的硅杂化合物特殊的生物活性和独特的物理化学性能.概述了近年来可见光催化有机硅的合成方法和策略,并对其反应机理和局限性予以分析和讨论.  相似文献   
108.
金属有机骨架(MOFs)材料因具有无机和有机的杂合性质、高度有序的多孔性、结构可修饰性、比表面积大和孔隙率高等特点,在催化领域具有广阔的应用前景。本文从氢能的开发利用角度出发,在纯MOFs、MOFs复合及衍生材料三个方面对近十年来过渡金属MOFs基催化剂在电解水制氢方面的重要研究进展进行了综述,着重针对材料的合成进行了探讨,以及在基础研究和产业应用的角度指出当前过渡金属MOFs基制氢催化剂面临的挑战和机遇,对其应用前景进行展望。  相似文献   
109.
Selective hydrogenation is a vital class of reaction. Various unsaturated functional groups in organic compounds, such as aromatic rings, alkynyl (C≡C), carbonyl (C=O), nitro (-NO2), and alkenyl (C=C) groups, are typical targets in selective hydrogenation. Therefore, selectivity is a key indicator of the efficiency of a designed hydrogenation reaction. 5-(Hydroxymethyl)furfural (HMF) is an important platform compound in the context of biomass conversion, and recently, the hydrogenation of HMF to produce fuels and other valuable chemicals has received significant attention. Controlling the selectivity of HMF hydrogenation is paramount because of the different reducible functional groups (C=O, C-OH, and C=C) in HMF. Moreover, the exploration of new routes for hydrogenating HMF to valuable chemicals is becoming attractive. 5-Methylfurfural (MF) is also an important organic compound; thus, the selective hydrogenation of HMF to MF is an essential synthetic route. However, this reaction has challenging thermodynamic and kinetic aspects, making it difficult to realize. Herein, we propose a strategy to design a highly efficient catalytic system for selective hydrogenation by exploiting the synergy between steric hindrance and hydrogen spillover. The design and preparation of the Pt@PVP/Nb2O5 catalyst (PVP = polyvinyl pyrrolidone; Nb2O5 = niobium(V) oxide) were also conducted. Surprisingly, HMF could be converted to MF with 92% selectivity at 100% HMF conversion. The reaction pathway was revealed through the combination of control experiments and density functional theory calculations. Although PVP blocked HMF from accessing the surface of Pt, hydrogen (H2) could be activated on the surface of Pt due to its small molecular size, and the activated H2 could migrate to the surface of Nb2O5 through a phenomenon called H2 spillover. The Lewis acidic surface of Nb2O5 could not adsorb the C=O group but could adsorb and activate the C-OH group of HMF; therefore, when HMF was adsorbed on Nb2O5, the C-OH groups were hydrogenated by the spilled over H2 to form MF. The high selectivity of this reaction was realized because of the unique combination of steric effects, hydrogen spillover, and tuning of the electronic states of the Pt and Nb2O5 surfaces. This new route for producing MF has great potential for practical application owing to its discovered advantages. We believe that this novel strategy can be used to design catalysts for other selective hydrogenation reactions. Furthermore, this study demonstrates a significant breakthrough in selective hydrogenation, which will be of interest to researchers working on the utilization of biomass, organic synthesis, catalysis, and other related fields.   相似文献   
110.
Industrialization undoubtedly boosts economic development and improves the standard of living; however, it also leads to some serious problems, including the energy crisis, environmental pollution, and global warming. These problems are associated with or caused by the high carbon dioxide (CO2) and sulfur dioxide (SO2) emissions from the burning of fossil fuels such as coal, oil, and gas. Photocatalysis is considered one of the most promising technologies for eliminating these problems because of the possibility of converting CO2 into hydrocarbon fuels and other valuable chemicals using solar energy, hydrogen (H2) production from water (H2O) electrolysis, and degradation of pollutants. Among the various photocatalysts, silicon carbide (SiC) has great potential in the fields of photocatalysis, photoelectrocatalysis, and electrocatalysis because of its good electrical properties and photoelectrochemistry. This review is divided into six sections: introduction, fundamentals of nanostructured SiC, synthesis methods for obtaining nanostructured SiC photocatalysts, strategies for improving the activity of nanostructured SiC photocatalysts, applications of nanostructured SiC photocatalysts, and conclusions and prospects. The fundamentals of nanostructured SiC include its physicochemical characteristics. It possesses a range of unique physical properties, such as extreme hardness, high mechanical stability at high temperatures, a low thermal expansion coefficient, wide bandgap, and superior thermal conductivity. It also possesses exceptional chemical characteristics, such as high oxidation and corrosion resistance. The synthesis methods for obtaining nanostructured SiC have been systematically summarized as follows: Template growth, sol-gel, organic precursor pyrolysis, solvothermal synthesis, arc discharge, carbon thermal reduction, and electrospinning. These synthesis methods require high temperatures, and the reaction mechanism involves SiC formation via the reaction between carbon and silicon oxide. In the section of the review involving the strategies for improving the activity of nanostructured SiC photocatalysts, seven strategies are discussed, viz., element doping, construction of Z-scheme (or S-scheme) systems, supported co-catalysts, visible photosensitization, construction of semiconductor heterojunctions, supported carbon materials, and construction of nanostructures. All of these strategies, except element doping and visible photosensitization, concentrate on enhancing the separation of holes and electrons, while suppressing their recombination, thus improving the photocatalytic performance of the nanostructured SiC photocatalysts. Regarding the element doping and visible photosensitization strategies, element doping can narrow the bandgap of SiC, which generates more holes and electrons to improve photocatalytic activity. On the other hand, the principle of visible photosensitization is that photo-induced electrons move from photosensitizers to the conduction band of SiC to participate in the reaction, thus enhancing the photocatalytic performance. In the section on the applications of nanostructured SiC, photocatalytic H2 production, pollutant degradation, CO2 reduction, photoelectrocatalytic, and electrocatalytic applications will be discussed. The mechanism of a photocatalytic reaction requires the SiC photocatalyst to produce photo-induced electrons and holes during irradiation, which participate in the photocatalytic reaction. For example, photo-induced electrons can transform protons into H2, as well as CO2 into methane, methanol, or formic acid. Furthermore, photo-induced holes can convert organic waste into H2O and CO2. For photoelectrocatalytic and electrocatalytic applications, SiC is used as a catalyst under high temperatures and highly acidic or basic environments because of its remarkable physicochemical characteristics, including low thermal expansion, superior thermal conductivity, and high oxidation and corrosion resistance. The last section of the review will reveal the major obstacles impeding the industrial application of nanostructured SiC photocatalysts, such as insufficient visible absorption, slow reaction kinetics, and hard fabrication, as well as provide some ideas on how to overcome these obstacles.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号