首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2305篇
  免费   373篇
  国内免费   494篇
化学   1268篇
晶体学   110篇
力学   648篇
综合类   57篇
数学   45篇
物理学   1044篇
  2024年   8篇
  2023年   29篇
  2022年   71篇
  2021年   84篇
  2020年   81篇
  2019年   61篇
  2018年   56篇
  2017年   105篇
  2016年   107篇
  2015年   116篇
  2014年   112篇
  2013年   207篇
  2012年   169篇
  2011年   208篇
  2010年   155篇
  2009年   164篇
  2008年   172篇
  2007年   146篇
  2006年   177篇
  2005年   149篇
  2004年   119篇
  2003年   100篇
  2002年   88篇
  2001年   71篇
  2000年   61篇
  1999年   50篇
  1998年   53篇
  1997年   49篇
  1996年   45篇
  1995年   31篇
  1994年   25篇
  1993年   27篇
  1992年   20篇
  1991年   13篇
  1990年   12篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   5篇
  1978年   1篇
  1975年   1篇
排序方式: 共有3172条查询结果,搜索用时 312 毫秒
121.
Characterization of the geometrical and structural characteristics of oxidized Cu area in high resolution is crucial for tracking the change in morphology, exploring interactions between graphene layers and Cu substrates and revealing the mechanism for the orientation-dependent oxidation of Cu. Here, we reported experimental results on nanoscale imaging of natural oxidation of the polycrystalline Cu substrate coated by partial-coverage chemical vapor deposition (CVD)-grown graphene stored in dryer under ambient conditions for up to 10 months. Scanning electron microscope (SEM), together with atomic force microscope (AFM), Raman, and X-ray photoelectron spectroscopy (XPS), was used for systematically studying the morphological and compositional changes at nanoscale during oxidation. The appearance of oxidized Cu substrates could be unambiguously distinguished from the unoxidized regions based on their distinctly different morphologies in SEM images, and the underlying mechanism was discussed in detail. By analyzing a millimeter-seized polycrystalline Cu substrate, we found that the oxidation of polycrystalline Cu substrate depends sensitively on both orientation of graphene layers and Cu substrates. Furthermore, the time-dependent oxidation evolution of Cu substrate was also established, and the oxidation rate was readily determined. The findings reported here will have important implications for developing protection coatings for Cu.  相似文献   
122.
The inhibition efficiency of 2-Pyrrolidin-1-yl-1,3-thiazole-5-carboxylic acid (PTCA) against mild steel (MS) corrosion was investigated in acidic solution by using quantum chemical calculations based on Density Functional Theory (DFT) method and electrochemical measurements. The electrochemical impedance spectroscopy (EIS), potentiodynamic, potential zero charge (pzc) analysis and electrochemical noise (EN) measurements at various concentrations (from 0.1 to 10 mM) and immersion times were utilized in experimental part. The surface analysis was achieved scanning electron microscope (SEM) and contact angle measurements in the absence and presence of 10 mM PTCA. According to DFT results, PTCA exhibited 3.737 eV band gap and 8.130 Debye dipole moment which were a signal of potentially convenient corrosion inhibitor properties. PTCA has a remarkable corrosion inhibition capability to mild steel, which inhibited both anodic and cathodic corrosion rates, relying on it's physically adsorption on the metal solution interface and protection ability was increased with increasing PTCA concentration. The obtained adsorption equilibrium constant was 11.11 × 103 M-1 and calculated standard free energy of adsorption was ?33.03 kJ mol?1. The determined activation energy values were 55.58 kJ mol?1 and 96.86 kJ mol?1 in 0.5 M HCl in the absence and presence of 10 mM PTCA, respectively. PTCA demonstrated a strong inhibition efficiency of 98.3%, after 168 h immersion, according to the EIS results. As a consequently, we recommend that PTCA is a convenient inhibitor in 0.1 M HCl for mild steel protection against corrosion.  相似文献   
123.
This work is intended to examine the microbially influenced corrosion on galvanized steel (GS) caused by sulfate-reducing bacteria (SRB). The efficacy of Butea monosperma (palash) leaf extract to mitigate the corrosion caused by Desulfovibrio desulfuricans was investigated in modified Barr's medium. Weight loss and electrochemical analysis were performed to check the corrosion rate at regular time intervals. SEM images were performed to understand the level of deterioration of the metal surfaces. Image analysis of the unprotected sample showed the presence of pits. From the gravimetric study, the maximum inhibition efficiency (IE) of 98% was obtained with 500 ppm of Palash leaf extract for the fourth-week sample. With the addition of 500 ppm of palash extract, the sulfide concentration decreases to 0 ppm from 123 ppm. Outcomes of potentiodynamic polarization (PP) studies showed that the extract disturbs the cathodic reaction significantly and moves the corrosion potential to a more negative value and IE was about 71% from PP studies. FTIR and GC-MS analysis was performed to recognize the plausible chemical compounds present in Palash leaf powder. EIS results confirmed that the resistance to corrosion increases substantially with the addition of inhibitor. The mechanism for corrosion inhibition has been proposed based on the results obtained.  相似文献   
124.
The effectiveness of 1H?pyrazole?3,5?dicarboxylic acid 5?benzyl ester 3?phenyl ester (PCBPE) as a preventer for deterioration of IS 513 Gr. D steel in 1 M HCl medium is evaluated via weight loss, electrochemical impedance, and polarization techniques. Kinetic and thermodynamic parameters assessed the feasibility of the adsorption process at diverse temperatures. The inhibition action on mild steel has been enhanced with increasing PCBPE concentration. It is found from the polarization studies that PCBPE behaves as mixed type inhibitor in HCl medium. The adsorption process of PCBPE on mild steel surface from acid environment is favoured Langmuir adsorption isotherm. The shielding efficiency of PCBPE has been enhanced at elevated concentrations, and it has been diminished at amplified temperatures. The Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), and Energy Dispersive Spectrum (EDS) were used to establish a surface characterization of metal specimens. A quantum chemical analysis of electron density distributions in the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) demonstrated how the inhibitor undergoes adsorption on mild steel in 1 M HCl. All experimental findings substantiate the corrosion mitigation performance of PCBPE on mild steel in acidic environments.  相似文献   
125.
将阳极氧化与光还原法结合,在TiO_(2)纳米管阵列(TiO_(2)NTAs)表面修饰Ag纳米粒子,获得一种均匀有序、稳定性高且可循环的TiO_(2)NTAs/Ag活性基底。采用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(UV-Vis DRS)、表面增强拉曼散射光谱(SERS)和扫描电子显微镜(SEM)等手段对TiO_(2)NTAs/Ag的组成和结构进行了表征。进一步研究了该TiO_(2)-NTAs/Ag阵列对盐酸四环素(TC-HCl)的SERS响应,结果表明,该复合基底对TC-HCl具有较高的检测灵敏度,在水中检测限可达1×10^(−14) mol/L,而TiO_(2)-NTAs与Ag之间的协同效应对其检测性能的提高起着关键作用。此外,TiO_(2)NTAs/Ag基底在光照下对TC-HCl展示了优异的降解活性,且至少可循环使用8次。表明该TiO_(2)NTAs/Ag基底在环境中有机污染物的SERS检测和降解领域具有潜在的应用前景。  相似文献   
126.
A series of FR-RPUF composites were prepared by a one-step water foaming process with ammonium polyphosphate (APP) and steel slag (SS) as flame retardants. Thermogravimetric analysis (TG), limiting oxygen index (LOI), UL-94 vertical combustion test, microscale combustion calorimetry (MCC), TG-Fourier transform infrared spectrometry (TG-FTIR), scanning electron microscopy (SEM), Raman spectra and FTIR were used to investigate the thermal stability, flame retardancy, combustion performance, gas phase products, and char residue morphology of FR-RPUF composites. TG test results showed that the initial decomposition temperature (T-5wt%) and char residue rate at 700°C of RPUF/APP/SS composites were significantly enhanced by the addition of APP and SS, and the thermal stability of the composites was improved. Flame retardant test results confirmed the significantly increased LOI values of RPUF/APP/SS composites with V-0 rating. TG-FTIR also confirmed the obviously decreased release of toxic gases and flammable gases in the combustion of RPUF/APP/SS composites. SEM and Raman spectra of char residues for the composites suggested that APP/SS system improved the compactness and graphitization degree of char layer for RPUF/APP/SS composite. The above researches provide a new strategy for the utilization of SS in fire safety engineering.  相似文献   
127.
Natural-based corrosion inhibitors have gained great research interest thanks to their low cost and higher performance. In this work, the chemical composition of the methanolic extract of Ammi visnaga umbels (AVU) was evaluated by gas chromatography (GC) coupled with mass spectrometry (MS) and applied for corrosion inhibition of carbon steel (CS) in 1.0 mol/L HCl using chemical and electrochemical techniques along with scanning electron microscope (SEM) and theoretical calculations. A total of 46 compounds were identified, representing 89.89% of the overall chemical composition of AVU extract, including Edulisin III (72.88%), Binapacryl (4.32%), Khellin (1.97%), and Visnagin (1.65%). Chemical (Weight loss) and electrochemical (potentiodynamic polarization curves (PPC), and electrochemical impedance spectroscopy (EIS)) techniques revealed that investigated extract can be used as an effective corrosion inhibitor for carbon steel in 1.0 mol/L HCl solution. At a low dose of 700 ppm, the inhibitory action of AVU extract reached an inhibition efficiency of 84 percent. According to polarization tests, the investigated extract worked as a mixed inhibitor, protecting cathodic and anodic corrosion reactions. The EIS test showed that upon the addition of AVU extract to HCl solution, the polarization resistance increased while the double layer decreased. SEM images showed a protected CS surface in the inhibited solution. Quantum chemical calculations by Density Functional Theory (DFT) for the main components confirmed the major role of heteroatoms and aromatic rings as adsorption sites. Molecular dynamics (MD) simulation was used to study the adsorption configuration of the main components on the Fe(1 1 0) surface. Outcomes from this study further confirmed the significant advantage of using plant-based corrosion inhibitors for protecting metals and alloys.  相似文献   
128.
In this research, we investigated the synthesis of a novel water-soluble bis azo pyrazolin-5-one (ABP) which was synthesized efficiently via the regioselective reaction of hydrazine with coumarin hydrazone (CMH). Also, we evaluate their anti-corrosion and anti-bacterial behavior. The inhibition efficiency of ABP in an acidic medium (1.0 M HCl) was evaluated using various electrochemical and surface morphology measurements. The novel bis pyrazole-based azo dye ABP (16 × 10?6 M) demonstrated a higher protection capacity (93.3 %). Tafel curves revealed that ABP was a mixed-type inhibitor. The adsorption of ABP on the C-steel (CS) surface is proven by the alteration in (Rct and Cdl) impedance characteristics and obeyed the Langmuir isotherm model. SEM/EDX, AFM, and XPS surface examinations confirmed the enhancement of an adsorbed film protects the CS surface from acid corrosion at the appropriate dose. Furthermore, theoretical calculations using DFT and MC simulations were performed to identify the active sites on ABP molecules in charge of the adsorption and surface protection of the CS. The adsorption of bis pyrazole-based azo dye on the metal surface explained the protection mechanism. Moreover, the ABP screened for its antimicrobial activity against sulfate-reducing bacteria (SRB), and the calculated inhibition efficiency was 100 %. The current work presents significant results in manufacturing and producing novel water-soluble bis pyrazole-based azo dye derivative with high anti-corrosion and anti-microbial efficiency.  相似文献   
129.
Wetting of a sessile droplet on structured or patterned surface can be found in a broad range of applications. The researchers have been promoted to keep working on the topic. The review is on the basis of the recent experimental advances on the sessile droplet wetting on the hydrophobic, hydrophilic, or combined hydrophobic and hydrophilic surfaces under isothermal conditions, and on heating or cooling substrates having nonisothermal conditions. More attention has been paid on the wetting configuration between the sessile droplet and the structured substrate; the research gap has been discussed on identifying the three-phase line shape. Further, the three-dimensional measurement for the sessile droplets on the patterned surfaces with focusing more on the contact line of sessile droplets might reveal new physical insights. This review targets at building a holistic overview on the sessile droplet wetting behaviors on the structured substrate in the past 2 years.  相似文献   
130.
Nanostructured TiO2 films were deposited onto Indium Tin Oxide (ITO) and glass substrates by dc reactive magnetron sputtering at different substrate inclination angles. The structural and optical properties of the deposited films were studied by X-ray diffraction, scanning electron microscopy and UV–Vis spectrophotometer, respectively. Dye-sensitized solar cells (DSSC) were assembled using these TiO2 films as photoelectrodes and the effect of the substrate inclination angle in the preparing process of TiO2 films on the DSSC conversion efficiency was studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号