首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
BackgroundThe environmental and economic benefits have been the driving force in search of efficient corrosion inhibitors for iron/steel used in industrial acidic medium. This study reports on berberine isolated from methanol extract of high-altitude (1347 m) shrub Mahonia nepalensis as a highly efficient and thermally stable corrosion inhibitor for mild steel (MS) in 1.0 M H2SO4 simulating acid pickling condition.MethodsThe weight-loss and electrochemical methods revealed the fast adsorption of berberine.Significant Findings: It achieved above 91% inhibition efficiency (IE) in 0.25 h and reached 94% in 6 h for 1000 ppm berberine. The IE increased with concentration and temperature, giving an IE of 97.2% at 328 K, which makes it a promising candidate for industrial application. It behaved as a mixed type of inhibitor as revealed by open circuit potential and polarization curves. The results indicated suppression of the corrosion by effectively forming an adsorbed berberine layer on the MS surface. Adsorption of the berberine followed a Langmuir adsorption isotherm. The thermodynamic parameters such as activation energy (43.19 kJ/mol), free energy (−35.05 kJ/mol), enthalpy (40.55 kJ/mol), and entropy (−97.83 J/molK) of adsorption supported both physical and chemical interactions of berberine with MS surface. The obtained results also revealed that the adsorption process was endothermic and spontaneous in nature.  相似文献   

3.
As corrosion inhibitors, a series of new amide derivatives of 13‐docosenoic acid was synthesized in yields of above 90% by reacting 13-docosenoic acid with primary and secondary aliphatic and aromatic amines. The inhibition efficiencies (%IEs) of these compounds at various concentrations for the suppression of corrosion of mild steel in 1.00 M HCl exposed for 96 h (4 days) at temperatures in the range 298–333 K were measured via gravimetric corrosion measurements. At 100 ppm, all compounds yielded satisfactory corrosion %IE in 1.00 M HCl; compounds 2 and 7 exhibited remarkable %IE of 70.0 and 74.7%, respectively. The results of gravimetric measurements further revealed that compound 7 performed excellently at 60 °C, with %IE = 96.8 at 500 ppm. Quantum chemical density functional theory (DFT) calculations helped predict that compound 7 should have more aromatic character, enabling it to serve as a donor-center for the empty d-orbital of the metal atoms, leading to higher corrosion IE. The adsorption of the inhibitor molecules on the surface of mild steel followed the Langmuir adsorption model, and the free energy of adsorption (ΔGads) value indicated that the inhibitors are adsorbed through a combined physisorption and chemisorption mechanism to provide effective surface coverage.  相似文献   

4.
Plant extracts are currently being used as eco-friendly corrosion inhibitors. In this study, the inhibitive performance of Xylocarpus Moluccensis extract (XME) was used as an eco-friendly corrosion inhibitor for the first time. The extract was studied using electrochemical measurement on mild steel in 1M HCl. Results from FIR and phytochemical confirmed that Xylocarpus Moluccensis extract contains compound hydroxyl group, phenolic, and flavonoid content which can be used as a corrosion inhibitor. The inhibition efficiency was determined using Tafel polarization and electrochemical impedance spectroscopy and showed 68% efficiency in 500 ppm. Langmuir adsorption isotherm was used to determine the adsorption mechanism of XME. Surface characterization (AFM) was also used to study the surface morphology of protective film inhibitors.  相似文献   

5.
Abstract

The present study investigated the adsorption and inhibition behavior of leaf extract of Tephrosia Purpurea (T. purpurea) on mild steel corrosion in 1?N H2SO4 solution using electrochemical and surface morphological methods. Techniques adopted for electrochemical studies were Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) technique; and surface morphological studies were carried out using Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). The leaf extract of T. purpurea was characterized using UV-Visible spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FT-IR), Nuclear Magnetic Resonance Spectroscopy (NMR) and Gas Chromatography – Mass Spectrometry (GCMS). The results obtained from electrochemical studies exhibited the potential of T. purpurea as good corrosion inhibitor. And, it was found that, the inhibition efficiency (I.E in %) increases with increase in concentration of the inhibitor molecules, the optimum inhibitor concentration observed was 300?ppm and the inhibition efficiency of 93% was observed at this inhibitor concentration. Above 300?ppm, there was not much changes in inhibition efficiency. Polarization studies provided the information that the inhibition is of mixed type and EIS confirmed that the corrosion process is controlled by single charge transfer mechanism. And, it was obtained that, the adsorption of inhibitor molecules obeys Langmuir adsorption isotherm. The inhibition is mainly by the adsorption of inhibitor molecules on the mild steel electrode surface, which was confirmed by FT-IR, SEM and AFM studies. Through all the experimental results, it can be arrived that, the leaf extract of T. purpurea performed as a good corrosion inhibitor for mild steel in 1?N sulfuric acid medium.  相似文献   

6.
Abstract

The inhibitive effect of the Murraya koenigii (curry leaf) leaf extract on the corrosion of mild steel in 1 M HCl was investigated by using weight loss, open circuit potential measurements, potentiostatic polarization techniques, and impedance analysis. The results show that Murraya koenigii extract is an effective corrosion inhibitor for protecting the corrosion of mild steel in 1 M HCl medium even at stimulated conditions. The inhibition efficiency increases with increasing the concentration of the inhibitor in the medium. The percentage inhibitor efficiency under stagnant condition calculated based on weight loss method is found to be above 94.5% when the medium contains 1000 ppm of the inhibitor.  相似文献   

7.
The effects of the molecular structure on the corrosion inhibition efficiency are investigated by nine methods of calculations. The selected thio compounds were previously identified as corrosion inhibitors for mild steel in the 1.0 M HCl solution. The electronic properties such as highest occupied molecular orbital (EHOMO) energy, lowest unoccupied molecular orbital (ELUMO) energy, dipole moment (μ), and Fukui indices are calculated and discussed. Results show that the corrosion inhibition efficiency increase with the increase in both EHOMO and μ values, respectively, and decrease in ELUMO. QSAR approach is utilized in this study; a good relationship is found between the experimental corrosion inhibition efficiency (IEexp, %) and the theoretical corrosion inhibition efficiency (IEtheor, %). The calculated inhibition efficiency is found closer to the experimental inhibition efficiency with a coefficient of correlation (R 2) of 0.875.  相似文献   

8.
Natural-based corrosion inhibitors have gained great research interest thanks to their low cost and higher performance. In this work, the chemical composition of the methanolic extract of Ammi visnaga umbels (AVU) was evaluated by gas chromatography (GC) coupled with mass spectrometry (MS) and applied for corrosion inhibition of carbon steel (CS) in 1.0 mol/L HCl using chemical and electrochemical techniques along with scanning electron microscope (SEM) and theoretical calculations. A total of 46 compounds were identified, representing 89.89% of the overall chemical composition of AVU extract, including Edulisin III (72.88%), Binapacryl (4.32%), Khellin (1.97%), and Visnagin (1.65%). Chemical (Weight loss) and electrochemical (potentiodynamic polarization curves (PPC), and electrochemical impedance spectroscopy (EIS)) techniques revealed that investigated extract can be used as an effective corrosion inhibitor for carbon steel in 1.0 mol/L HCl solution. At a low dose of 700 ppm, the inhibitory action of AVU extract reached an inhibition efficiency of 84 percent. According to polarization tests, the investigated extract worked as a mixed inhibitor, protecting cathodic and anodic corrosion reactions. The EIS test showed that upon the addition of AVU extract to HCl solution, the polarization resistance increased while the double layer decreased. SEM images showed a protected CS surface in the inhibited solution. Quantum chemical calculations by Density Functional Theory (DFT) for the main components confirmed the major role of heteroatoms and aromatic rings as adsorption sites. Molecular dynamics (MD) simulation was used to study the adsorption configuration of the main components on the Fe(1 1 0) surface. Outcomes from this study further confirmed the significant advantage of using plant-based corrosion inhibitors for protecting metals and alloys.  相似文献   

9.
2-Hydroxypropyl-3-piperazinyl-quinoline carboxylic acid methacrylate (HPQM) antibacterial agent in two different forms, solid form (HPQM-supported Neusilin absorbance; HPQM-neu) and liquid form (HPQM dissolved in deionized water; HPQM-water), were added to polypropylene (PP) and polystyrene (PS). The antibacterial performance against Escherichia coli and mechanical properties of the specimens were investigated. The effects of simulated conditions, including immersion in water (at room temperature and 80 °C), immersion in surfactant solution (at room temperature and 80 °C) and exposure to UV aging, on the antibacterial performance of specimens were also studied. The results showed that the optimal HPQM concentration for PP/HPQM-neu and PP/HPQM-water were 500 and 750 ppm, respectively, in order to reach 99.9% E. coli bacteria reduction, but those for PS/HPQM-neu and PS/HPQM-water were 1250 ppm. Addition of HPQM in both forms to PP and PS did not change the mechanical performance. HPQM-water was more appropriate and effective for antibacterial peformance for PP and PS than HPQM-neu. Immersion of all specimens in water and detergent solution (at room temperature and 80 °C) and UV aging decreased the antibacterial performance at different rates, the effect being very pronounced for the specimens with HPQM-neu.  相似文献   

10.
This study aimed to examine the extract of barks of Tamarix aphylla as a corrosion inhibitor. The methodology briefly includes plant sample collection, extraction of the corrosion inhibitor, gravimetric analysis, plotting potentiodynamic polarization plots, electrochemical impedance spectroscopic measurements, optimization of conditions, and preparation of the inhibitor products. The results show that the values of inhibition efficiency (IE%) increased as the concentrations of the inhibitor increased, with a maximum achievable inhibition efficiency of 85.0%. Potentiodynamic polarization (PP) tests revealed that the extract acts as a dual-type inhibitor. The results obtained from electrochemical impedance spectroscopy (EIS) measurements indicate an increase in polarisation resistance, confirming the inhibitive capacity of the tested inhibitor. The adsorption of the inhibitor on the steel surface follows the Langmuir adsorption isotherm model and involves competitive physio-sorption and chemisorption mechanisms. The EIS technique was utilized to investigate the effect of temperature on corrosion inhibition within the 298–328 K temperature range. Results confirm that the inhibition efficiency (IE%) of the inhibitor decreased slightly as the temperature increased. Lastly, the thermodynamic parameters for the inhibitor were calculated.  相似文献   

11.
Purpose of studyDodonaea viscosa Jacq. is an ethnomedicinal plant that has been extensively used for the treatment of gout, rheumatism and pain. Current study was undertaken to mine its antioxidant, antimicrobial, cytotoxic and antidiabetic potential. Chromogenic assays were employed to establish plant’s multimode antioxidant profile whereas HPLC fingerprinting was performed to quantify polyphenols. Standard brine shrimp lethality, MTT and SRB assays proved its cytotoxicity potential.ResultsAmong all the extracts (flower, leaf, stem and root), maximum extract recovery (22% w/w), gallic acid equivalent total phenolic content (20.11 ± 0.11 ug GAE/mg DW), ascorbic acid equivalent total antioxidant capacity (22.5 ± 0.07 µg/mg DW) and total reducing power (31.1 ± 1.13 µg/mg DW) were recorded in the distilled water + acetone extract of leaf. The acetone extract of leaf showed maximum quercetin equivalent total flavonoid content (4.78 ± 0.13 µg/mg DW). HPLC-DAD analysis revealed significant amount of rutin, vanillic acid, coumaric acid, ferulic acid, gallic acid, syringic acid, cinnamic acid, gentisic acid, catechin, caffeic acid, apigenin and myricetin in the different plant parts. Maximum scavenging potential was exhibited by methanol + ethyl acetate stem extract (IC50 = 23.8 µg/ml). The highest antibacterial potential was found in flower (85.7%) and root (71.4%) extracts. The ethanol + ethyl acetate (1:1) leaf extract showed noteworthy toxicity against brine shrimps (LC50 = 95.46 µg/ml) while a notable antiproliferative activity against THP-1 (IC50 = 3.4 µg/ml) and Hep G2 (IC50 = 20 µg/ml) cell lines was shown by ethanol + ethyl acetate extracts (1:1) of stem and root, respectively. A moderate inhibition of α-amylase enzyme was observed in all parts of the plant.ConclusionThe results of the present study suggest D. viscosa as a potential source of antioxidant, anticancer and α-amylase inhibitory phytochemicals.  相似文献   

12.
The inhibition of aluminium in 0.5 M H2SO4 by extracts of Spondias mombin L. was investigated using the standard gravimetric technique at 30–60 °C. The trend of inhibition efficiency with temperature was used to propose the mechanism of inhibition. It was found that the S. mombin L. extract acts as an inhibitor for acid-induced corrosion of aluminium. Inhibition efficiency (%I) of the extract increased with an increase in concentration of the S. mombin L. extract but decreased with temperature. Furthermore, inhibition efficiency (%I) synergistically increased on addition of potassium iodide. Inhibitor adsorption characteristics were approximated by Langmuir adsorption isotherm at all the concentrations and temperatures studied. The mechanism of physical adsorption is proposed from the trend of inhibition efficiency with temperature and from the calculated values of Gibbs free energy, activation energy and heat of adsorption. Quantum chemical calculations were performed using the density functional theory at B3LYP/6-31G (d) level of theory to find out whether a clear link exists between the inhibitive effect of the extract and the electronic properties of its main constituents.  相似文献   

13.
Ficus palmata Forssk. (Moraceae family) is medicinally valuable plant that is mostly used as folk medicine for the treatment of different diseases. Phytochemical composition was evaluated by preliminary phytochemical investigation, GCMS analysis, and total bioactive contents (TPC and TFC). The antioxidant, enzyme inhibition, antimicrobial, thrombolytic and anticancer activities were performed for biological evaluation. The extract exhibited the maximum total phenolic (49.24 ± 1.21 mg GAE/g) and total flavonoid contents (29.9 ± 1.13 mg QE/g) which may be correlated to higher antioxidant potential of extract. The GCMS investigation identified the presence of 27 phytocompounds of different classes related to aldehydes, esters of fatty acids, triterpenes, steroids, triterpenoid. The extract possessed the strong α-glucosidase (73.4 ± 4.65 %) and moderate α-amylase inhibition activity (47.1 ± 3.29 %). Significant results were observed in case of antiviral, antifungal, and antibacterial activities. F. palmata extract inhibited the growth of HepG2 cancer cells in a dose-dependent manner. The extract also exhibited moderate in vitro thrombolytic activity. In addition, the phytocompounds identified by GCMS were subjected to in silico molecular docking studies to analyze the binding affinity between phytocompounds and enzymes (α-glucosidase and α-amylase). Moreover, the best docked compounds were selected for ADMET studies which provide information about pharmacokinetics, physicochemical properties, drug-likeness, and toxicity of identified phytocompounds. The outcome of our research revealed that ethanolic extract of F. palmata possessed good antidiabetic, antimicrobial, thrombolytic and anticancer potential. This plant should be further explored to isolate the bioactive compounds for new drug development.  相似文献   

14.
《Arabian Journal of Chemistry》2020,13(11):8133-8145
Humans and animals are frequently exposed to heavy metals in the environment, which are highly toxic to the physiological milieu and organs of the body. We investigated the ameliorative potentials of ethanol leaf extract of Ruspolia hypocrateriformis against redox imbalance due to exposure of rats to heavy metals. The in vitro study explored the antioxidant potentials of the ethanol leaf extract using 1,1-diphenyl-2-picryl hydrazyl, nitric oxide and ferric reducing antioxidant potential assays respectively. HPLC was used to quantify the amount of flavonoids and phenolic acids in the extract. For in vivo study, 30 rats were randomly divided into 5 groups. Group A received normal saline. Group B received combined solution of Lead Nitrate and Mercury Chloride (11.25 mg/kg and 0.4 mg/kg) per Bwt/day. Group C, D and E were administered with the leaf extract at doses of 200, 400 and 600 mg/kg body weight respectively for 28 consecutive days. Biomarkers of hepatic dysfunctions and oxidative stress were investigated in the study rats. The HPLC study revealed high amount of gallic and ferulic acids (17.86 ± 2.68), which are the major phenolic compounds found in the extract. The extract further exhibited high antioxidant potentials in inhibiting the scavenging activity of free radicals produced in vitro. Interestingly, 600 mg/kg dosage of the leaf extract successfully ameliorated the distorted redox imbalance and oxidative damage in the liver of the rats caused by exposure to the heavy metals. Leaf extract of Ruspolia hypocrateriformis demonstrated strong antioxidant potentials, which could be exploited in pharmaceutical preparations.  相似文献   

15.
Bioassay guided fractionation of Pistacia integerrima crude methanolic extract gave Pistacide-A (1) and Pistacide-B (2), along with ten known phytochemicals (312). Biochemical analysis of crude plant extract, in-vitro and in-silico carbonic anhydrase inhibitory potential of newly isolated compounds Pistacide-A (1) and Pistacide-B (2) were performed. The cytotoxicity of extract in methanol, ethylacetate and n-butanol against Artemia salina brine-shrimp was 34.98 g/ml, 160.81 g/ml, and 135.77 g/ml, respectively. The significant antimicrobial activity was exhibited by crude, ethyl acetate, and n-butanol fractions. Compounds 1 (IC50 = 6.51 ± 0.42 mM) and 2 (IC50 = 2.85 ± 0.09 mM) showed good carbonic anhydrase inhibition compared with standard zonisamide drug (IC50 = 1.87 ± 0.003 mM). In addition, we have also clarified the electronic properties, absorption wavelengths, molecular electrostatic potential and Hirshfeld analysis by first-principles studies. The coherent intra-molecular charge transfer was seen from occupied to unoccupied molecular orbitals. The absorption wavelengths calculated at time dependent B3LYP/6-31G** level in methanol provided excellent accord with the experimental evidence. Molecular docking score revealed that Pistacide-B would be an efficient drug than its other counterpart that is rational to the experimental data.  相似文献   

16.
The inhibiting behavior of bis-(2-benzothiazolyl)-disulfide on mild steel corrosion was evaluated in 1?M HCl solution. Weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques were used in this study. In EIS technique, by performing Kramers–Kronig transformations, the experimental results validated, before fitting any theoretical model on them. The obtained results showed that the inhibition efficiency (%IE) increases by increasing the concentration of bis-(2-benzothiazolyl)-disulfide up to 2.02?×??0???M (%IE?~??2??8). Between the results obtained from various used techniques, a good agreement was found. Polarization curves indicate that the inhibition of the inhibitor is a mixed anodic–cathodic nature and Langmuir isotherm is found as an accurate isotherm describing the adsorption behavior. It also found that its inhibition mechanism of bis-(2-benzothiazolyl)-disulfide is at the interval of physical adsorption and chemical binding. The inhibition efficiency of the inhibitor decreased by rising of temperature in the range of 25??5?°C and these results, verified adsorption behavior of the inhibitor.  相似文献   

17.
This study compares the inhibitory activities of methanolic extraction of various plants including Artemisia pallens (MEAP), mangrove leaves like Rhizophora mangle (MERM), Avicennia marina (MEAM) and seaweeds such as Pandia povanica (MEPP), Sargassum tenerrimum (MEST) on the corrosion of mild steel (MS) coupons that were incubated on Pseudomonas stutzeri (P. stutzeri) SKR4 strain isolated from the cooling tower water (CTW). The activities of inhibitors are found using GCMS analysis and interactions between microbes and inhibitors were examined in the test for antibacterial activity, minimal inhibition concentration, biofilm formation assay. These all show an excellent inhibitory effect against P. stutzeri. The weight loss, impedance spectroscopy, and Tafel polarization tests used to validate the corrosion investigations show that the inhibitors MEAP-75, MERM-71, MEAM-69, MEPP-66 and MEST-63 % are effective at inhibiting corrosion at 25 ppm. According to Potentiodynamic polarization plots, these five inhibitors act as mixed-type inhibitors. The surface investigation of MS metals by FTIR, SEM, XRD to examine the biofilm surface and it revealed deep pitting corrosion in the bacterial system. In the conclusion, eco-friendly green inhibitors have controlled the biocorrosion in cooling tower water and are recommended for usage in industries as an alternative to environmentally hazardous inhibitors.  相似文献   

18.
There are a lot of natural resources that potentially used as herbal medicines in Indonesia. Some of the herbs, like Dewa leaves (Gynura pseudochina (L) D.C) and temu ireng rhizome (Curcuma aeruginosa Roxb.), were ussually used to increase number of thrombocytes in dengue patient. This current study was to determine the potential of dewa leaves (Gynura pseudochina (L) D.C) and temu ireng rhizome (Curcuma aeruginosa Roxb.) against the number of trombocytes, erythrocytes, and hematocrits level on male white rats (Rattus novergicus) by using Heparin Induction. Dosages of the extracts were 250 mg/kg BW and 500 mg/kg BW used for both dewa leaves and temu ireng rhizome. Extracts were given orally to the tested animals for seven continuous days. The number of trombocytes, erythrocytes, and hematocrites level were examine at day 7 using sysmex XE-5000 hematology analyzer. The result showed that the rat groups which were treated with dewa leaves extract at 500 mg/kgBW; temu ireng Rhizomes extract at 250 mg/kgBW and 500 mg/kgBW dosages had significant differences (α = 0.05) on number of thrombocytes. The percentages of thrombocytes number enhancement for temu ireng rhizomes extract 500 mg/kgBW, temu ireng rhizomes extract 250 mg/kgBW, dewa leaves extract 500 mg/kgBW were 26.98%, 24.48%, 19.44% respectively. The rats group which were treated with temu ireng Rhizomes extract at 500 mg/kgBW, dewa leaves extract at 250 mg/kgBW and 500 mg/kgBW had significant differences (α = 0.05) on erythrocytes number and hematocrits level enhancement. The percentages of erythrocytes number enhancement for dewa leaves extract at dose of 500 mg/kgBW and 250 mg/kgBW, temu ireng rhizomes extract 500 mg/kgBW were 9.59%, 9.11%, 9.02% respectively. The highest percentages of hematocrits level enhancement was given by dewa leaves extract at dose of 500 mg/kgBW (10,97%), suggesting that the extracts treatment would not trigger plasma leakage. Thus, dewa leaves extract at 500 mg/kgBW; temu ireng rhizomes extract at 250 mg/kgBW and 500 mg/kgBW dosages are potential as candidates to be medicinal herbs to increase numbers of thrombocytes on dengue fever treatment  相似文献   

19.
The study aimed to investigate the antibacterial activity of Mustard (Brassica juncea) and Moringa (Moringa oleifera) leaf extracts and coagulant protein for their potential application in water treatment. Bacterial cell aggregation and growth kinetics studies were employed for thirteen bacterial strains with different concentrations of leaf extracts and coagulant protein. Moringa oleifera leaf extract (MOS) and coagulant protein showed cell aggregation against ten bacterial strains, whereas leaf extract alone showed growth inhibition of five bacterial strains for up to 6 h and five bacterial strains for up to 3 h. Brassica juncea leaf extract (BJS) showed growth inhibition for up to 6 h, and three bacterial strains showed inhibition for up to 3 h. The highest inhibition concentration with 2.5 mg/mL was 19 mm, and furthermore, the minimum inhibitory concentration (MIC) (0.5 mg/mL) and MBC (1.5 mg/mL) were determined to have a higher antibacterial effect for <3 KDa peptides. Based on LCMS analysis, napin was identified in both MOS and BJS; furthermore, the mode of action of napin peptide was determined on lipoprotein X complex (LpxC) and four-chained structured binding protein of bacterial type II topoisomerase (4PLB). The docking analysis has exhibited moderate to potent inhibition with a range of dock score −912.9 Kcal/mol. Thus, it possesses antibacterial-coagulant potential bioactive peptides present in the Moringa oleifera purified protein (MOP) and Brassica juncea purified protein (BJP) that could act as an effective antimicrobial agent to replace currently available antibiotics. The result implies that MOP and Brassica juncea purified coagulant (BJP) proteins may perform a wide degree of antibacterial functions against different pathogens.  相似文献   

20.
The extraction of Zea mays hairs (Z. mays) was carried out by soxhlet and ultrasound techniques and through three solvents. Phytochemical tests and quantitative analysis of total phenols content (TPC) and flavonoids content (FC) for all extracts were also determined. The antioxidant activity, for different fractions, was determined by using three methods; DPPH, FRAP and TAC. All extracts were rich in polyphenols and the analysis of TPC and FC showed that the hydro-ethanolic extract obtained by ultrasound was characterized by a significant amount of TPC and FC. The n-butanolic fraction was rich in FC and also had a very high antioxidant capacity. On the other hand, the inhibiting effect of hydro-ethanolic extract, n-butanolic fraction and standard (flavone) on mild steel corrosion in 1 M HCl solution was investigated by electrochemical measurements. The polarization curves along with EIS diagrams indicated that flavone was the major molecule responsible for inhibition and acted as mixed-type inhibitor with predominant control of cathodic reaction. The antioxidant activity of BF was well correlated to corrosion inhibition efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号