首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of droplet orientation on the flow directed organization of nanoparticles in evaporating nanofluid droplets is important for the efficiency of foliar applied fertilizers and contamination adhesion to the exterior of buildings. The so called "coffee ring" deposit resulting from the evaporation of a sessile nanofluid drop on a hydrophilic surface has received much attention in the literature. Deposits forming on hydrophobic surfaces in the pendant drop position (i.e. hanging drop), which are of importance in foliar fertilizer and exterior building contamination, have received much less attention. In this study, the deposit patterns resulting from the evaporation of water droplets containing silica nanoparticles on hydrophobic surfaces orientated in the sessile or pendant configuration are compared. In the case of a sessile drop the well known coffee ring pattern surrounding a thin nanoparticle layer was formed. A deposit consisting of a thin coffee ring surrounding a bump was formed in the pendant position. A mechanism involving flow induced aggregation at the droplet waist, settling, orientation dependant accumulation within the drop and pinning of the contact line is suggested to explain the findings. Differences in the contact area and adhesion of deposits with surface orientation will affect the efficiency and rainfastness of foliar fertilizers and the cleanliness of building exteriors.  相似文献   

2.
Generating droplets via microfluidic chips is a promising technology in microanalysis and microsynthesis. To realize room-temperature ionic liquid (IL)-water two-phase studies in microscale, a water-immiscible IL was employed as the continuous phase for the first time to wrap water droplets (either plugs or spheres) on flow-focusing microfluidic chips. The IL, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), could wet both hydrophilic and hydrophobic channel surfaces because of its dual role of hydrophilicity/hydrophobicity and extremely high viscosity, thus offering the possibility of wrapping water droplets in totally hydrophilic (THI), moderately hydrophilic (MHI), and hydrophobic (HO) channels. The droplet shape could be tuned from plug to sphere, with the volume from 6.3 nL to 65 pL, by adding an orifice in the focusing region, rendering the hydrophilic channel surface hydrophobic, and suppressing the Uw/UIL ratio below 1.0. Three different breakup processes were defined and clarified, in which the sub-steady breakup and steady breakup were essential for the formation of plugs and spheric droplets, respectively. The influences of channel hydrophilicity/hydrophobicity on droplet formation were carefully studied by evaluating the wetting abilities of water and IL on different surfaces. The superiority of IL over water in wetting hydrophobic surface led to the tendency of forming small, spheric aqueous droplets in the hydrophobic channel. This IL-favored droplet-based system represented a high efficiency in water/IL extraction, in which rhodamine 6G was extracted from aqueous droplets to [BMIM][PF6] in the hydrophobic orifice-included (HO-OI) channel in 0.51 s.  相似文献   

3.
Evaporation of aqueous droplets of carbon nanotubes (CNTs) coated with a physisorbed layer of humic acid (HA) on a partially hydrophilic substrate induces the formation of a film of CNTs. Here, we investigate the role that the global geometry of the substrate surfaces has on the structure of the CNT film. On a flat mica or silica surface, the evaporation of a convex droplet of the CNT dispersion induces the well-known "coffee ring", while evaporation of a concave droplet (capillary meniscus) of the CNT dispersion in a wedge of two planar mica sheets or between two crossed-cylinder sheets induces a large area (>mm(2)) of textured or patterned films characterized by different short- and long-range orientational and positional ordering of the CNTs. The resulting patterns appear to be determined by two competing or cooperative sedimentation mechanisms: (1) capillary forces between CNTs giving micrometer-sized filaments parallel to the boundary line of the evaporating droplet and (2) fingering instability at the boundary line of the evaporating droplet and subsequent pinning of CNTs on the surface giving micrometer-sized filaments of CNTs perpendicular to this boundary line. The interplay between substrate surface geometry and sedimentation mechanisms gives an extra control parameter for manipulating patterns of self-assembling nanoparticles at substrate surfaces.  相似文献   

4.
Coalescence of a falling droplet with a stationary sessile droplet on a superhydrophobic surface is investigated by a combined experimental and numerical study. In the experiments, the droplet diameter, the impact velocity, and the distance between the impacting droplets were controlled. The evolution of surface shape during the coalescence of two droplets on the superhydrophobic surface is captured using high speed imaging and compared with numerical results. A two-phase volume of fluid (VOF) method is used to determine the dynamics of droplet coalescence, shape evaluation, and contact line movement. The spread length of two coalesced droplets along their original center is also predicted by the model and compared well with the experimental results. The effect of different parameters such as impact velocity, center to center distance, and droplet size on contact time and restitution coefficient are studied and compared to the experimental results. Finally, the wetting and the self-cleaning properties of superhydrophobic surfaces have been investigated. It has been found that impinging water drops with very small amount of kinetic impact energy were able to thoroughly clean these surfaces.  相似文献   

5.
The spreading of surfactant solutions over hydrophobic surfaces is considered from both theoretical and experimental points of view. Water droplets do not wet a virgin solid hydrophobic substrate. It is shown that the transfer of surfactant molecules from the water droplet onto the hydrophobic surface changes the wetting characteristics in front of the drop on the three-phase contact line. The surfactant molecules increase the solid-vapor interfacial tension and hydrophilize the initially hydrophobic solid substrate just in front of the spreading drop. This process causes water drops to spread over time. The time of evolution of the spreading of a water droplet is predicted and compared with experimental observations. The assumption that surfactant transfer from the drop surface onto the solid hydrophobic substrate controls the rate of spreading is confirmed by our experimental observations. Copyright 2000 Academic Press.  相似文献   

6.
Four patterned surfaces with hydrophilic areas of different sizes were prepared using photolithography with a smooth octadecyltrimethoxysilane (ODS) hydrophobic coating. The hydrophilic area in the surfaces was aligned hexagonally with a constant area fraction. The sliding angle and contact angle hysteresis of the water droplets increased concomitantly with increasing pattern size. The increase of the contact line distortion between defects at the receding side plays an important role in this trend. The droplet sliding velocity also increased concomitantly with increasing pattern size. This trend was simulated by a simple flow model. The contribution of the interface between the ODS region and the hydrophilic area was deduced from this trend. This study demonstrated the different size dependency of the chemical surface defects for sliding behavior between the critical moment at which a droplet slides down and the period when a droplet is sliding.  相似文献   

7.
Dynamic effects of bouncing water droplets on superhydrophobic surfaces   总被引:1,自引:0,他引:1  
Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water repellent properties. Superhydrophobic surfaces may be generated by the use of hydrophobic coating, roughness, and air pockets between solid and liquid. Dynamic effects, such as the bouncing of a droplet, can destroy the composite solid-air-liquid interface. The relationship between the impact velocity of a droplet and the geometric parameters affects the transition from the solid-air-liquid interface to the solid-liquid interface. Therefore, it is necessary to study the dynamic effect of droplets under various impact velocities. We studied the dynamic impact behavior of water droplets on micropatterned silicon surfaces with pillars of two different diameters and heights and with varying pitch values. A criterion for the transition from the Cassie and Baxter regime to the Wenzel regime based on the relationship between the impact velocity and the parameter of patterned surfaces is proposed. The trends are explained based on the experimental data and the proposed transition criterion. For comparison, the dynamic impact behavior of water droplets on nanopatterned surfaces was investigated. The wetting behavior under various impact velocities on multiwalled nanotube arrays also was investigated. The physics of wetting phenomena for bouncing water droplet studies here is of fundamental importance in the geometrical design of superhydrophobic surfaces.  相似文献   

8.
The synthesis and properties of superhydrophobic surfaces based on binary surface topography made of zinc oxide (ZnO) microrod-decorated micropatterns are reported. ZnO is intrinsically hydrophilic but can be utilized to create hydrophobic surfaces by creating artificial roughness via microstructuring. Micron scale patterns consisting of nanocrystalline ZnO seed particles were applied to glass substrates with a modified ink-jet printer. Microrods were then grown on the patterns by a hydrothermal process without any further chemical modification. Water contact angle (WCA)(1) up to 153° was achieved. Different micro array patterned surfaces with varying response of static contact angle or sessile droplet analysis are reported.  相似文献   

9.
Micro‐structure patterned substrates attract our attention due to the special and programmable wettabilities. The interaction between the liquid and micro/nano structures gives rise to controllable spreading and thus evaporation. For exploration of the application versatility, the introduction of nanoparticles in liquid droplet results in interaction among particles, liquid and microstructures. In addition, temperature of the substrates strongly affects the spreading of the contact line and the evaporative property. The evaporation of sessile droplets of nanofluids on a micro‐grooved solid surface is investigated in terms of liquid and surface properties. The patterned nickel surface used in the experiments is designed and fabricated with circular and rectangular shaped pillars whose size ratios between interval and pillars is fixed at 5. The behavior is firstly compared between nanofluid and pure liquid on substrates at room temperature. For pure water droplet, the drying time is relatively longer due to the receding of contact line which slows down the liquid evaporation. Higher concentrations of nanoparticles tend to increase the total evaporation time. With varying concentrations of graphite at nano scale from 0.02% to 0.18% with an interval at 0.04% in water droplets and the heating temperature from 22 to 85°C, the wetting and evaporation of the sessile droplets are systematically studied with discussion on the impact parameters and the resulted liquid dynamics as well as the stain. The interaction among the phases together with the heating strongly affects the internal circulation inside the droplet, the evaporative rate and the pattern of particles deposition.  相似文献   

10.
Controlling the spatial distribution of liquid droplets on surfaces via surface energy patterning can be used to deliver material to specified regions via selective liquid/solid wetting. Although studies of the equilibrium shape of liquid droplets on heterogeneous substrates exist, much less is known about the corresponding wetting kinetics. Here we present large-scale atomistic simulations of liquid nanodroplets spreading on chemically patterned surfaces. Results are presented for lines of polymer liquid (droplets) on substrates consisting of alternating strips of wetting (equilibrium contact angle theta0 = 0 degrees) and nonwetting (theta0 approximately 90 degrees) material. Droplet spreading is compared for different wavelength lambda of the pattern and strength of surface interaction on the wetting strips. For small lambda, droplets partially spread on both the wetting and nonwetting regions of the substrate to attain a finite contact angle less than 90 degrees. In this case, the extent of spreading depends on the interaction strength in the wetting regions. A transition is observed such that, for large lambda, the droplet spreads only on the wetting region of the substrate by pulling material from nonwetting regions. In most cases, a precursor film spreads on the wetting portion of the substrate at a rate strongly dependent on the width of the wetting region.  相似文献   

11.
The purpose of this paper is to present a consistent theoretical concept that can explain the various physical phenomena associated with the effect of droplet size on contact angle for droplets on solid surfaces, and with the geometry of the liquid/gas/solid contact line in general. Two droplet geometries have been considered: uniformly elongated droplets and axisymmetric droplets. It has been shown that the contact angle for elongated droplets is size-independent and, thus, satisfies the Young equation for constant material and interfacial properties. On the other hand, whereas the contact angle for axisymmetric droplets is size-dependent and does not satisfy the original Young equation, it is shown that this contact angle can still be predicted for any combination of droplet and substrate materials, and a given mass of the droplet. The theoretical work has been combined with the development of numerical schemes of solving the Laplace-Young equation for various droplet geometries. The proposed approach has been applied to different material/substrate combinations and validated against several sets of experimental data. As a result, a method has been developed for predicting the contact angle of both long and axisymmetric sessile droplets of arbitrary sizes for given liquid/solid/gas properties.  相似文献   

12.
The behavior of thin wetting films on chemically patterned surfaces was investigated. The patterning was performed by means of imprinting of micro-grid on methylated glass surface with UV-light (λ=184.8 nm). Thus imprinted image of the grid contained hydrophilic cells and hydrophobic bars on the glass surface. For this aim three different patterns of grids were utilized with small, medium and large size of cells. The experiment showed that the drainage of the wetting aqueous films was not affected by the type of surface patterning. However, after film rupturing in the cases of small and medium cells of the patterned grid the liquid from the wetting film underwent fast self-organization in form of regularly ordered droplets covering completely the cells of the grid. The droplets reduced significantly their size upon time due to evaporation. In the cases of the largest cell grid, a wet spot on the place of the imprinted grid was formed after film rupturing. This wet spot disassembled slowly in time. In addition, formation of a periodical zigzag three-phase contact line (TPCL) was observed. This is a first study from the planned series of studies on this topic.  相似文献   

13.
A molecularly detailed self-consistent field (SCF) approach is applied to describe a sessile hydrocarbon droplet placed at the air-water interface. Predictions of the contact angle for macroscopic droplets follow from using Neumann's equation, wherein the macroscopic interfacial tensions are computed from one-gradient calculations for flat interfaces. A two-gradient cylindrical coordinate system with mirror-like boundary conditions is used to analyse the three dimensional shape of the nano-scale oil droplet at the air-water interface. These small droplets have a finite value of the Laplace pressure and concomitant line tension. It has been calculated that the oil-water and oil-vapour interfacial tensions are curvature dependent and increase slightly with increasing interfacial curvature. In contrast, the line tension tends to decrease with curvature. In all cases there is only a weak influence of the line tension on the droplet shape. We therefore argue that the nano-scale droplets, which are described in the SCF approach, are representative for macroscopic droplets and that the method can be used to efficiently generate accurate information on the spreading of oil droplets at the air-water interface in molecularly more complex situations. As an example, non-ionic surfactants have been included in the system to illustrate how a molecularly more complex situation will change the wetting properties of the sessile drop. This short forecast is aimed to outline and to stress the potential of the method.  相似文献   

14.
We study the morphologies of single liquid droplets wetting a substrate in the presence of the line tension of the three-phase contact line. On a homogeneous substrate, the line tension leads to a discontinuous unbinding of the droplet if its volume is decreased below a critical value. For a droplet wetting a structured surface with a circular domain, a line tension contrast gives rise to discontinuous depinning transitions of the contact line from the domain boundary as the droplet volume is varied. We calculate the corresponding free energy bifurcation diagram analytically for axisymmetric droplet shapes. Numerical minimization of the droplet free energy shows that line tension contrasts can stabilize nonaxisymmetric droplet shapes, thus modifying the bifurcation diagram. These latter shapes should be accessible to experiments and can be used to reveal the presence of a line tension contrast.  相似文献   

15.
The evaporation of sessile drops at reduced pressure is investigated. The evaporation of water droplets on aluminum and PTFE surfaces at reduced pressure was compared. It was found that water droplets on an aluminum surface exhibit a 'depinning jump' at subatmospheric pressures. This is when a pinned droplet suddenly depins, with an increase in contact angle and a simultaneous decrease in the base width. The evaporation of sessile water droplets with a nonionic surfactant (Triton X-100) added to an aluminum surface was then studied. The initial contact angle exhibited a minimum at 0.001 wt% Triton X-100. A maximum in the evaporation rate was also observed at the same concentration. Droplets with low surfactant concentrations are found to exhibit the 'depinning jump.' It is thought that the local concentration of the surfactant causes a gradient of surface tension. The balance at the contact angle is dictated by complex phenomena, including surfactant diffusion and adsorption processes at interfaces. Due to the strong evaporation near the triple line, an accumulation of the surfactant will lead to a surface tension gradient along the interface. The gradient of surface tension will influence the wetting behavior (Marangoni effect). At low surfactant concentrations the contact line depins under the strong effect of surface tension gradient that develops spontaneously over the droplet interface due to surfactant accumulation near the triple line. The maximum evaporation rate corresponds to a minimum contact angle for a pinned droplet.  相似文献   

16.
The wetting behavior of water droplets on periodically structured hydrophobic surfaces was investigated. The effect of structure geometry, roughness, and relative pore fraction on the contact angles was investigated experimentally for droplets of size comparable to the size of the structures. It was found that surface geometry may induce a transition from groove-filling and Wenzel-like behavior to nonfilling of surface grooves and consequential Cassie-Baxter behavior. Numerical calculations of the free energy of these systems suggest that the equilibrium behavior is in line with the experimental observations. The observations may serve as guidelines for the design of surfaces with the desired wetting behavior.  相似文献   

17.
The manipulation of colloidal nanoparticles (NPs) in a drying droplet has critical importance not only for several industrial applications but also their assembly into patterns on surfaces. The influence of a tip with hydrophilic or hydrophobic surfaces dipped into a drying droplet on hydrophilic or hydrophobic surfaces on the behavior of 98 nm latex NPs was investigated. The formation of concentric rings on hydrophilic glass surfaces regardless of the surface chemistry of the dipped tip was observed. On the other hand, no pattern formation on hydrophobic surfaces was observed with the insertion of the tip. With a hydrophilic tip, the concentric rings were formed due to stick-slip motion of the solvent contact line resulting from competition between pinning and capillary forces while the capillary effect was not effective until the surface of the tip was changed by adherent NPs making the tip surface available for water adherence with a hydrophobic tip, which results in the pulling of droplet towards the tip. It is also found that the tip thickness and suspension concentration significantly influences the formation of concentric rings on surfaces. This simple procedure can be used to influence the distribution or assembly of NPs in the droplet area.  相似文献   

18.
Micropatterned fluoroalkylsilane monolayer surfaces with liquidphilic/liquidphobic area (line width 1-20 microm) were prepared with few defects by vacuum ultraviolet (VUV) photolithography. The anisotropic wetting of a macroscopic droplet with a 0.5-5 mm diameter on the micropatterned surfaces was investigated. The strong anisotropy of the contact angle and the sliding angle and droplet distortion for fluoroalkylsilane/silanol patterned surfaces was attributed to the difference in the energy barrier of wetting between parallel and orthogonal lines. The wetting anisotropy decreased with decreases in the liquidphilic area. Fluoroalkylsilane/alkylsilane patterned surfaces with small differences in the surface free energies of the components showed anisotropic wetting only for the low-surface-tension liquids.  相似文献   

19.
蔡东海  刘欢  江雷 《化学通报》2014,77(8):743-751
自然界存在许多具有各向异性表面结构的生物,其表面表现出典型的对液体操控的方向性的差异。近年来,这种表面微结构的构筑引起了广泛的研究兴趣,已成为一个热点研究方向。天然的各向异性浸润表面是由复杂的异质微纳米结构组成,基于基础研究和应用推广的目的,可以将其简化为一些有序的方向性结构表面。本文介绍了现在应用广泛的几种各向异性微纳米分级结构的构筑方法,并对比分析其可行性。同时,文中还深入讨论了各向异性微纳米分级结构表面对于液体行为的调控。这种各向异性微纳米分级结构表面在微流体运输、微流控芯片等领域将有重要应用,也会对生命科学(比如生物芯片和重大疾病的早期诊断)、能源(比如电极材料的可控制备)和环境(比如污染物的分离及定向转化)等研究做出巨大的贡献。  相似文献   

20.
How to make the Cassie wetting state stable?   总被引:1,自引:0,他引:1  
Wetting of rough hydrophilic and hydrophobic surfaces is discussed. The stability of the Cassie state, with air trapped in relief details under the droplet, is necessary for the design of true superhydrophobic surfaces. The potential barrier separating the Cassie state and the Wenzel state, for which the substrate is completely wetted, is calculated for both hydrophobic and hydrophilic surfaces. When the surface is hydrophobic, the multiscaled roughness of pillars constituting the surface increases the potential barrier separating the Cassie and Wenzel states. When water fills the hydrophilic pore, the energy gain due to the wetting of the pore hydrophilic wall is overcompensated by the energy increase because of the growth of the high-energetic liquid-air interface. The potential barrier separating the Cassie and Wenzel states is calculated for various topographies of surfaces. Structural features of reliefs favoring enhanced hydrophobicity are elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号