首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3329篇
  免费   487篇
  国内免费   310篇
化学   3601篇
晶体学   1篇
力学   35篇
综合类   7篇
数学   147篇
物理学   335篇
  2024年   13篇
  2023年   139篇
  2022年   125篇
  2021年   252篇
  2020年   245篇
  2019年   190篇
  2018年   142篇
  2017年   152篇
  2016年   251篇
  2015年   215篇
  2014年   263篇
  2013年   290篇
  2012年   226篇
  2011年   246篇
  2010年   157篇
  2009年   189篇
  2008年   191篇
  2007年   171篇
  2006年   121篇
  2005年   99篇
  2004年   82篇
  2003年   57篇
  2002年   36篇
  2001年   27篇
  2000年   21篇
  1999年   32篇
  1998年   27篇
  1997年   25篇
  1996年   16篇
  1995年   34篇
  1994年   28篇
  1993年   10篇
  1992年   14篇
  1991年   12篇
  1990年   4篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有4126条查询结果,搜索用时 156 毫秒
191.
由于具备组织穿透深度深和时空分辨率高等优势, 近年来近红外二区(Near-infrared-Ⅱ, NIR-Ⅱ, 1000~1700 nm)荧光成像技术得到了快速发展, 其在肿瘤临床诊断和治疗的潜力更是引发了广泛关注. 本文首先阐释了NIR-Ⅱ窗口荧光成像的原理及其优势, 随后根据结构分类归纳总结了现有荧光团的特征, 重点介绍了荧光探针在性能优化上的进展以及在肿瘤早期检测、 术中导航和光疗中的应用, 最后讨论了现有NIR-Ⅱ 荧光探针的局限以及临床转化面临的挑战, 并对未来的发展方向进行了展望.  相似文献   
192.
In recent years, fullerene nanoparticles have received extensive attention due to their unique physical and chemical properties. Properly modified fullerene nanoparticles have excellent biocompatibility and significant anti-tumor activity and anti-depression, which makes them have broad application prospects in the field of cancer anti-depression. The present study used the density functional theory (DFT) calculations to perform a theoretical examination of the interaction of fluoxetine (F) as medicine with the functionalized fullerene O and NO (F–O and F–NO surface in gas phase physiological media. According to DFT calculations, adsorption energies were ?3396.6350645, ?3540.2952907, ?6778.526894, and ?6952.251487 kJ for F/P complexes (fullerene O and NO (F–O and F–NO surface) respectively, proposing the possibility of the adsorption process of F molecule onto the fullerene surface concerning the energetic perspective. Calculations of electronic parameters aimed at determining the molecule's reactivity. Bandgap of F–O and F–NO were 0.03715, 0.04328 respectively, by this value we can recognize the reactivity of complexes.  相似文献   
193.
The main aim of this study is to formulate the combination of the bioactive composite containing chitosan/β -tricalcium phosphate (CH/β-TCP) as potential drug delivery platforms for the sustained release of antibiotics. Herein the mode of amoxicillin (AMX) maintained in the β-TCP/chitosan composite was characterized using XRD, FT-IR to confirm the phase purity and functional groups. SEM was used to examine the size and shape of particles. The SEM images of the biocomposites after drug release confirmed that they are biodegradable. In vitro drug release experiments in PBS (pH 7.4) revealed a sustained release profile in a neutral medium. Drug release profiles were evaluated according to five different kinetic models including Zero Order, First Order, Higuchi, Hixon Crowel, and Korsmeyer-Peppas. The release profile was best expressed by the Korsmeyer Peppas model because the results showed high linearity. Overall, the positive effect of chitosan coating on the drug elution profile of β-TCP as carriers for the controlled delivery of antibiotics was regarded as biocompatible for the controlled drug delivery system.  相似文献   
194.
The ultrasound-induced cleavage of covalent and non-covalent bonds to activate drugs (sonopharmacology) is a promising concept to gain control over the action of active pharmaceutical ingredients by an external trigger. Previously, linear polymer architectures bearing drug payloads were exploited for drug release by using the principles of polymer mechanochemistry. In this work, the carrier design is altered by the polymer topology to improve the ultrasound-triggered release of covalently anchored drugs from polymer scaffolds. We use microgels crosslinked by mechanoresponsive disulfides and copolymerized with Diels-Alder adducts of furylated payload molecules and acetylenedicarboxylate. Force-induced thiol formation induces a Michael-type addition liberating the payload from the microgels. The use of microgels significantly reduces sonication times compared to linear polymer chains and shields the cargo efficiently from non-triggered activation using ultrasound that produces inertial cavitation at a frequency of 20 kHz as model condition.  相似文献   
195.
本文以环状单萜醇α-萜品醇、L-薄荷醇及链状单萜醇香叶醇、香茅醇为先导化合物,采用酰氯酯化法合成肉豆蔻酸α-萜品醇酯(TER-C14)、肉豆蔻酸-L-薄荷醇酯(MEN-C14)、肉豆蔻酸香叶醇酯(GER-C14)和肉豆蔻酸香茅醇酯(CIT-C14),并考察单萜醇及其肉豆蔻酯作为促透剂对布南色林(Blo)的促透效果。通过体外经皮渗透实验、体外释放实验和分子模拟技术初步探究单萜醇及其肉豆蔻酯的促透机制。结果显示,当GER-C14或CIT-C14为促透剂时,均有显著的促透效果(P<0.05),并且24h经皮累积透过量是空白组的4.84倍和4.45倍。促透机制为肉豆蔻酸单萜醇酯破坏药物与神经酰胺之间的氢键相互作用,增加脂质迁移率和药物的自由能,从而促进药物的渗透。肉豆蔻酸单萜醇酯有望作为新型促透剂在经皮给药系统中广泛应用。  相似文献   
196.
胶体粒子是肿瘤治疗中最常用的载体, 尽管在过去的研究中不同的胶体粒子已经被广泛报道, 但如何进一步提高胶体粒子的药物递送效率仍然存在着一些挑战. 大量的研究表明胶体粒子的尺寸、形状、结构和表面化学等物理化学性质在药物递送过程中具有重要的作用, 但胶体粒子的机械性能对药物递送过程的影响研究和综述相对较少. 本综述从不同机械性能胶体粒子的制备与表征出发, 概述了胶体粒子的机械性能对血液循环、肿瘤富集、渗透以及细胞内化过程的影响, 并对该领域存在的问题以及发展的趋势进行了展望. 该综述有助于帮助科学工作者更好地理解胶体粒子的机械性能对药物递送的影响规律, 从而优化胶体粒子的设计并提高纳米药物的递送效率和生物利用率.  相似文献   
197.
刘丰硕  董茜  赵忠夫  刘伟  张春庆 《应用化学》2022,39(10):1523-1532
Electrospun membranes are widely utilized to enhance the water vapor permeability and drug delivery performance of transdermal drug delivery patches. Due to the lack of adhesion property,however,most of them cannot closely contact with skin,which impedes the delivery of drugs to the skin,thus affecting the transdermal administration. C5 resin is used to endow poly(styrene isoprene styrene)(SIS)electrospun membranes with pressure-sensitive adhesion property. Investigation is performed on how to control the structure,adhesion properties and drug delivery performance of SIS/C5 electrospun membranes loaded with synthetic capsaicin via compositions,drugs and electrospinning conditions. The results demonstrate that the electrospun membrane with a SIS/C5 ratio of 2∶1 has excellent water vapor permeability(7. 17×10-3 g/(h·cm2)and adhesion properties(180(°)peel strength is 0. 2 kN/m,tack force is 0. 64 N/cm2 ,holding power is greater than 7 days). The synthetic capsaicin has good compatibility with the SIS/C5 electrospun membranes,in which no drug crystallizes and the drug loading is beneficial to improve the water vapor permeability. As the drug loading is 8%,the tack force is 0. 6~0. 8 N/cm2 ,the 180(°)peel strength is 0. 2~0. 3 kN/m,the holding power is greater than 7 days,and no residue is left during peeling tests. In vitro drug release indicates that the drug has a behavior of sustained release with a 24-hour cumulative release rate of greater than 50% for all SIS/ C5 electrospun membranes,meeting the requirements of transdermal drug delivery patches. © 2022, Science Press (China). All rights reserved.  相似文献   
198.
In this study, a model hydrophilic drug (porphyrin) was encapsulated within hydrophobic polylactic acid (PLA) nanoparticles (NPs) with different crystallinity and the relevant release behaviors were investigated. The crystalline modification was done using a modified nanoprecipitation method, where homo and stereocomplexed PLA NPs with different average diameters based on varying polymer concentrations and solvent/nonsolvent ratios (S/N) were prepared. Entrapment efficiency and drug release of sterocomplexed-PLA NPs were compared with neat poly(l -lactic acid) (PLLA) NPs. Furthermore, to get the more sustained release, porphyrin-loaded NPs were immobilized within electrospun poly(d ,l -lactide-co-glycolide (PLGA) nanofibers (NFs). Outcomes revealed that solution concentration and solvent/nonsolvent ratio play significant roles in the formation of homo and stereocomplexed NPs. On the other hand, it was found that the formation of stereocrystals did not significantly affect the size and morphology of NPs compared with neat NPs. With regard to the entrapment efficiency and drug content, stereocomplexd-PLA NPs behave relatively the same as neat PLLA NPs while the more sustained release was observed for stereocomplexed NPs. Also, it was observed that electrospinning of PLGA solution loaded by NPs led to the uniform distribution of NPs into PLGA fibers. Encapsulating the drug-loaded NPs into nanofibers decreased the rate of drug release by 50% after 24 h, compared with direct loading of drug into PLGA NFs. We conclude that it is possible to tune the entrapment efficiency and modify the release rate of the drug by giving small changes in the process parameters without altering the physical properties of the original drug substance and polymer.  相似文献   
199.
Most recent advances in the synthesis of supramolecular hydrogels based on low molecular weight gelators (LMWGs) have focused on the development of novel hybrid hydrogels, combining LMWGs and different additives. The dynamic nature of the noncovalent interactions of supramolecular hydrogels, together with the specific properties of the additives included in the formulation, allow these novel hybrid hydrogels to present interesting features, such as stimuli-responsiveness, gel-sol reversibility, self-healing and thixotropy, which make them very appealing for multiple biomedical and biotechnological applications. In particular, the inclusion of magnetic nanoparticles in the hydrogel matrix results in magnetic hydrogels, a particular type of stimuli-responsive materials that respond to applied magnetic fields. This review focuses on the recent advances in the development of magnetic supramolecular hydrogels, with special emphasis in the role of the magnetic nanoparticles in the self-assembly process, as well as in the exciting applications of these materials.  相似文献   
200.
Drug carrier materials need to possess good biological safety. Presently, most biosafety evaluation studies use rodent animal models, including rats and rabbits. However, the cost of raising these animals is relatively high and the experimental period is long. Caenorhabditis elegans(C. elegans) presents an ideal toxicological evaluation model due to its simple structure, easy cultivation, short life cycle, and evolutionary conservation. In this paper, we used C. elegans to test the biological safety of our pH-responsive carrier system(FFPFF self-assembling into a nanosphere structure, FFPFF Nps), which was designed for anti-tumor drug delivery. Our results showed that exposure to high doses of FFPFF Nps did not have a significant impact on the survival rate, growth, development, movement, and reproduction of C. elegans. The preliminary evaluation of the overall biological model of C. elegans shows that FFPFF Nps has good biological safety and warrants further study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号