首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Photothermally driven volume transitions in polymer microgels have promising applications for site-specific drug delivery and photodynamic therapy. We studied the temperature-induced volume phase transitions for a series of thermoresponsive microgels of various compositions to find a system with a sharp transition in the physiologically relevant range spanning 38-41 degrees C in 0.01 M phosphate-buffered saline solution (pH = 7.4). We found that the poly(N-isopropylacrylamide-maleic acid) microgels showed an 8-fold decrease in size under the aforementioned conditions. These microgels were loaded with gold nanorods designed to absorb in the near-IR spectral range. Following irradiation at lambda = 809 nm, the microgels underwent a large, reversible, photothermally triggered change in volume. We believe that this microgel system is a promising candidate for photothermally controlled drug release.  相似文献   

2.
The interactions of a range of water-soluble drugs of different charges and hydrophobicities with carboxylic acid-functionalized poly(N-isopropylacrylamide)-based microgels containing different functional group distributions are investigated to determine the impact of drug properties and microgel morphologies on drug uptake and release. The radial distribution of carboxylic acid functional groups in the microgel and the hydrophobicities of the cationic drugs both strongly affect drug partitioning between the solution and microgel phases. Microgels with surface-localized functional group distributions bind less cationic drug than bulk-functionalized microgels, likely due to the formation of a locally collapsed "skin layer" at the acid-base drug binding sites at the microgel surface. In this way, cationic drugs induce a local phase transition that can be used to regulate small molecule diffusion in and out of the gel. As the drug hydrophobicity is increased, the skin layer becomes more condensed and less drug uptake is achieved. In the case of anionic or neutral drugs, high drug uptakes are achieved independent of the functional group distribution within the microgel. High drug uptake is also observed when nonfunctionalized poly(N-isopropylacrylamide) microgels are used as the uptake matrix, suggesting the importance of hydrophobic partitioning in regulating drug-microgel interactions.  相似文献   

3.
A kind of novel fluorine-containing pH-responsive core/shell microgels poly(DMAEMA-co-HFMA)-g-PEG were prepared via surfactant-free emulsion polymerization using water as the solvent. The well-defined chemical structure of the copolymers was characterized by FTIR, 1H-NMR, 19F-NMR, and elemental analysis. The microgel particles were studied by florescence probe technique, dynamic light scattering, and zeta potential measurement; the microgels displayed a significant pH-responsive behavior. Furthermore, the cytotoxicity assay indicated that the copolymer microgels had low toxicity, and 5-FU-loaded microgels offered a certain killing potency against cancer cells. In addition, the drug loading and in vitro drug release demonstrated that 5-FU was successfully incorporated into polymeric microgels, and the drug-loaded microgels showed a marked pH-dependent drug release behavior. This study suggests that the poly(DMAEMA-co-HFMA)-g-PEG microgels play an important role in the release mechanism stimulated by the change in the pH and have potential applications as a controlled drug release carrier.  相似文献   

4.
Smart functional microgels hold great potential in a variety of applications, especially in drug transportation. However, current drug carriers based on physiological internal stimuli cannot efficiently orientate to designated locations. Therefore, it is necessary to introduce the self-propelled particles to the drug release of the microgels. In order to study self-propulsion of microgels induced by light, it is also a challenge to prepare micron-sized microgels so that they can be observed directly under optical microscopes. In this work, phototactic microgels with photoresponsive properties are prepared. The microgel particles can be observed by confocal laser scanning microscopy. The photoresponsive properties of microgels are fully investigated by various instruments. Light can also regulate the state of the microgel solution, making it switch between turbidity and clarity. The phototaxis of particles irradiated by UV light was studied, which may be used for microgels enrichment and drug transportation and release.  相似文献   

5.
The aim of this work was to obtain well-defined HyPG-MA (methacrylated hyperbranched polyglycerol) microparticles with uniform sizes. Therefore, three different preparation methods were evaluated. First, we assessed a micromolding technique using rigid SU-8 (a photoresist based on epoxies) grids. Independent of the surface treatment of the SU-8 grid or the type of polymer used, approximately 50% of the microgels remained attached to the SU-8 grid or broke into smaller particles during the release process in which drying of the gels was followed by a sonication process. Although 90% methacrylate conversion could be obtained, this method has some additional drawbacks as the obtained dried microgels did not rehydrate completely after the drying step. Second, a soft micromolding technique was evaluated using elastomeric PDMS (poly(dimethyl siloxane)) grids. The use of these flexible grids resulted in a high yield (80-90% yield; >90% methacrylate conversion) of microgels with a well-defined size and shape (squares 100 microm x 100 microm x 50 microm or hexagons with ? 30 microm and a thickness of 20 microm) without the occurrence of water evaporation. However, a number of particles showed a less-defined shape as not all grids could be filled well. The microgels showed restricted swelling, implying that these gels are dimensionally stable. Third, an alternative method referred to as photolithography was evaluated. This method was suitable to tailor accurately the size and shape of HyPG-MA microgels and additionally gained 100% yield. Well-defined HyPG-MA microgels in the size range of 200-1400 microm (thickness of 6, 20, or 50 microm), with a methacrylate conversion of >90%, could easily be prepared by adding an inhibitor (e.g., 1% (w/v) of vitamin C) to the polymer solution to inhibit dark polymerization. Microgels in the size range of 30-100 microm (>90% conversion) could only be obtained when applying the photomask in direct contact with the polymer solution and using a higher (i.e., 2% (w/v)) concentration of vitamin C. Additionally, the microgels showed limited swelling, indicating that rather dimensionally stable particles were obtained. In conclusion, this paper shows that photolithography and soft micromolding, as compared to rigid micromolding, are the most appropriate techniques to fabricate structured HyPG-MA microgels with a tailorable and well-defined size and shape. These microgels have great potential in tissue engineering and drug delivery applications.  相似文献   

6.
Glucosamine-carrying temperature- and pH-sensitive microgels with an average diameter of about 100 nm were successfully prepared by free radical precipitation polymerization. The thermo- and pH-responsive properties of the microgels were designed by the incorporation of N-isopropylacrylamide (NIPAM) and acrylic acid (AAc) to copolymerize with acrylamido-2-deoxyglucose (AADG). The stimuli sensitivity of the microgels was studied by the measurement of their sizes and volume phase transition temperature (VPTT) under different surrounding conditions. The results showed that the microgels were responsive to temperature, pH, and ionic strength, and could have a desired VPTT by modifying AADG and AAc contents. The effect of temperature and pH on insulin release from the microgels was also investigated. The release of drug at the tumor-surrounding environment is faster than that under normal physiological conditions. A preliminary in vitro cell study showed that the glucosamine-carrying microgels are more biocompatible to mouse fibroblast cells, compared to the microgels without glucosamine. These glucosamine-carrying dual-sensitive microgels may be promising carriers for targeted drug delivery to tumors.  相似文献   

7.
The highly acidic gastric environment creates a physiological barrier for using therapeutic drugs in the stomach. While proton pump inhibitors have been widely used for blocking acid‐producing enzymes, this approach can cause various adverse effects. Reported herein is a new microdevice, consisting of magnesium‐based micromotors which can autonomously and temporally neutralize gastric acid through efficient chemical propulsion in the gastric fluid by rapidly depleting the localized protons. Coating these micromotors with a cargo‐containing pH‐responsive polymer layer leads to autonomous release of the encapsulated payload upon gastric‐acid neutralization by the motors. Testing in a mouse model demonstrate that these motors can safely and rapidly neutralize gastric acid and simultaneously release payload without causing noticeable acute toxicity or affecting the stomach function, and the normal stomach pH is restored within 24 h post motor administration.  相似文献   

8.
We describe droplet microfluidic strategies used to fabricate advanced microparticles that are useful structures for the encapsulation and release of actives; these strategies can be further developed to produce microparticles for advanced drug delivery applications. Microfluidics enables exquisite control in the fabrication of polymer vesicles and thermosensitive microgels from single and higher-order multiple emulsion templates. The strategies used to create the diversity of microparticle structures described in this review, coupled with the scalability of microfluidics, will enable fabrication of large quantities of novel microparticle structures that have potential uses in controlled drug release applications.  相似文献   

9.
The remarkably high intracellular concentration of reducing agents is an excellent endogenous stimulus for designing nanocarriers programmed for intracellular delivery of therapeutic agents. However, despite their excellent biodegradability profiles, aliphatic polyesters that are fully degradable in response to the intracellular reducing environment are rare. Herein, a reduction‐responsive drug delivery nanocarrier derived from a linear polyester bearing disulfide bonds is reported. The reduction‐responsive polyester is synthesized via a convenient polycondensation process. After conjugation of terminal carboxylic acid groups of polyester to polyethylene glycol (PEG), the resulting polymer self‐assembles into nanoparticles that are capable of encapsulating dye and anticancer drug molecules. The reduction‐responsive nanoparticles display a fast payload release rate in response to the intracellular reducing environment, which translates into superior anticancer activity towards PC‐3 cells.  相似文献   

10.
王尊志  张健夫  陈栋栋 《应用化学》2014,31(10):1149-1155
以化学交联的聚烯丙基胺盐酸盐拟葡聚糖微凝胶和透明质酸为构筑基元,在导尿管表面层层组装构筑了厚度小于500 nm可控释放抗菌药物的聚合物微凝胶膜。 广谱抗菌药物头孢曲松钠通过扩散吸附的方法在2 min内快速负载到聚合物微凝胶膜中,并且在生理盐水中可控释放时间达3 h。 抗菌实验表明,组装有层层组装微凝胶膜并负载广谱抗菌药物的导尿管具有令人满意的抗菌效果,避免感染的发生。  相似文献   

11.
Two microporous biodegradable polyesters, i.e., PGA and PDLLA, were obtained by solid-state polymerization reaction from the sodium salts of the corresponding alpha-hydroxycarboxylic acids after washing out the by-product sodium chloride. The polymers were shaped by cold uniaxial pressing, by hot uniaxial pressing, and by extrusion at elevated temperature. Due to the special microporosity of the polymers, the introduction of drugs is possible at moderate temperature. The release kinetics of the model drug Phe and of the anti-tumor drug goserelin (an LH-RH agonist) from compacted polymer samples were fast (approx. 2 d). The release kinetics of goserelin were corrected for the decomposition of the drug. External coatings with PDLLA or PLLA obtained by immersion in polymer solution strongly slowed down the release kinetics in the case of the PDLLA coating, giving an almost linear release during 100 d. A coating with PLLA was unsuitable to slow down the release kinetics.  相似文献   

12.
The kinetics of the controlled release of the antiproliferative drug dipyridamole from microspheres based on the biocompatible and biodegradable polymer poly(3-hydroxy)butyrate is studied. As carriers for dipyridamole, microspheres prepared from a solution of poly(3-hydroxy)butyrate by single emulsion method are used. Under in vitro conditions, the kinetic curves describing the release of dipyridamole from microspheres with diameters of 19, 63, and 92 μm show two characteristic regions: the region of fast drug release within a short time period and a well-pronounced continuous linear region. For microspheres with a diameter of 4 μm, the linear region is missing. Analysis of the kinetic curves illustrating controlled drug release together with the measurements on polymer degradation shows that their kinetic profiles depend on the diffusion-controlled process and hydrolytic degradation of poly(3-hydroxy)butyrate. The diffusion kinetic equation describing both linear and nonlinear regions of dipyridamole released from the microspheres involves the sum of two terms: desorption from the sphere via the diffusion-controlled mechanism and drug release via the zero-order reaction. The linear region of the drug release curve is explained by the zero-order hydrolysis of poly(3-hydroxy)butyrate. The diffusion coefficients and kinetic constants are calculated. For bigger microspheres, the existence of the continuous linear region in the corresponding kinetic curves makes it possible to use microsystems based on poly(3-hydroxy)butyrate and dipyridamole as novel systems for local prolonged drug delivery.  相似文献   

13.
N-Isopropylacrylamide-co-acrylamidophenylboronic acid (NIPAM-co-PBA) microgels were prepared by free radical polymerization in water. The release of glucose and Alizarin Red S (ARS) from the microgels as a function of temperature has been investigated by using laser light scattering (LLS) and ultrasensitive differential scanning calorimetry (US-DSC). Such microgels can bind glucose and ARS via boronic acids at a lower temperature. As the temperature increases, the microgels shrink, and the diols are released. The release could be controlled by temperature. The effect of the structure of the microgels on the release is also discussed.  相似文献   

14.
Hybrid microgels photoresponsive in the near-infrared spectral range   总被引:4,自引:0,他引:4  
We report for the first time a photothermally responsive composite material based on polymer microgel particles doped with gold nanorods. We used the dependence of the longitudinal surface plasmon of the gold nanorods on their aspect ratio to synthesize nanoparticles with strong absorption in the near-IR spectral range (in the "water window"). The nanoparticles were incorporated in the interior of temperature-responsive poly(N-isopropylacrylamide-acrylic acid) microgels. Upon irradiation at lambda = 810 nm, hybrid microgel particles doped with Au nanorods underwent a strong deswelling phase transition. These photothermally responsive microgels can be used to carry and release small molecules (e.g., small protein molecules and drugs).  相似文献   

15.
An electrically controlled drug release (ECDR) system based on sponge-like nanostructured conducting polymer (CP) polypyrrole (PPy) film was developed. The nanostructured PPy film was composed of template-synthesized nanoporous PPy covered with a thin protective PPy layer. The proposed controlled release system can load drug molecules in the polymer backbones and inside the nanoholes respectively. Electrical stimulation can release drugs from both the polymer backbones and the nanoholes, which significantly improves the drug load and release efficiency. Furthermore, with one drug incorporated in the polymer backbone during electrochemical polymerization, the nanoholes inside the polymer can act as containers to store a different drug, and simultaneous electrically triggered release of different drugs can be realized with this system.  相似文献   

16.
Chen S  Tan Z  Li N  Wang R  He L  Shi Y  Jiang L  Li P  Zhu X 《Macromolecular bioscience》2011,11(6):828-838
Efficient intracellular translocation is achieved using an easily prepared hyperbranched polysulfonamine that remains negatively charged at physiological pH. Investigations on the cellular uptake mechanism and the subcellular distribution of PSA are reported. The in vitro cytotoxicity of PSA is found to be low. Using doxorubicin as a model drug, a PSA/drug complex is prepared by electrostatic interaction with a high drug payload that exhibits a controlled release in response to pH. Efficient intracellular drug delivery, strong growth inhibition of tumor cells, and low cytotoxicity to normal cells are observed. The results suggest a possible way to utilize anionic polymers for intracellular delivery of therapeutic moieties or drugs.  相似文献   

17.
A novel pH- and temperature-sensitive nanocomposite microgel based on linear Poly(acrylic acid) (PAAc) and Poly(N-isopropylacrylamide) (PNIPA) crosslinked by inorganic clay was synthesized by a two-step method. First, PNIPA microgel was prepared via surfactant-free emulsion polymerization by using inorganic clay as a crosslinker, and then AAc monomer was polymerized within the PNIPA microgel. The structure and morphology of the microgel were confirmed by FTIR, WXRD and TEM. The results indicated that the exfoliated clay platelets were dispersed homogeneously in the PNIPA microgels and acted as a multifunctional crosslinker, while the linear PAAc polymer chains incorporated in the PNIPA microgel network to form a semi-interpenetrating polymer network (semi-IPN) structure. The hydrodynamic diameters of the semi-IPN microgels ranged from 360 to 400 nm, which was much smaller than that of the conventional microgel prepared by using N,N′-methylenebis(acrylamide) (MBA) as a chemical crosslinker, the later was about 740 nm. The semi-IPN microgels exhibited good pH- and temperature-sensitivity, which could respond independently to both pH and temperature changes.  相似文献   

18.
Polymer microgels consist of swollen networks of crosslinked macromolecules with particulate dimensions. If these networks exhibit a delicate interplay with their environment that allows them to be swollen and deswollen or to be crosslinked and decrosslinked upon external stimulation, they can serve for a variety of applications in sensing and actuation. Such environmental sensitivity can be realized either by the use of covalently crosslinked polymer networks that exhibit critical miscibility with their swelling medium or by the use of transient and reversible, supramolecular chain crosslinking. This article highlights some achievements in the synthesis and application of sensitive microgels. In one area of focus, the article discusses the use of sensitive microgels as model colloids to study relations between structure, dynamics, and properties of soft matter. In another area of focus, the paper discusses the use of these microgels to encapsulate, host, and release functional additives. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 435–449  相似文献   

19.
The synthesis of polymer–drug conjugates from prodrug monomers consisting of a cyclic polymerizable group that is appended to a drug through a cleavable linker is achieved by organocatalyzed ring‐opening polymerization. The monomers polymerize into well‐defined polymer prodrugs that are designed to self‐assemble into nanoparticles and release the drug in response to a physiologically relevant stimulus. This method is compatible with structurally diverse drugs and allows different drugs to be copolymerized with quantitative conversion of the monomers. The drug loading can be controlled by adjusting the monomer(s)/initiator feed ratio and drug release can be encoded into the polymer by the choice of linker. Initiating these monomers from a poly(ethylene glycol) macroinitiator results in amphiphilic diblock copolymers that spontaneously self‐assemble into micelles with a long plasma circulation, which is useful for systemic therapy.  相似文献   

20.
Cyclodextrin‐based controlled delivery materials have previously been developed for controlled release of different therapeutic drugs. In this study, a supramolecular hydrogel made from cyclodextrin‐based macromonomers is subjected to molecular imprinting to investigate the impact on release kinetics and drug loading, when compared with non‐imprinted, or alternately imprinted hydrogels. Mild synthesis conditions are used to molecularly imprint three antibiotics—novobiocin, rifampicin, and vancomycin—and to test two different hydrogel chemistries. The release profile and drug loading of the molecularly imprinted hydrogels are characterized using ultraviolet spectroscopy over a period of 35 days and compared to non‐imprinted, and alternately imprinted hydrogels. While only modest differences are observed in the release rate of the antibiotics tested, a substantial difference is observed in the total drug‐loading amount possible for hydrogels releasing drugs which has been templated by those drugs. Hydrogels releasing drugs which are templated by other drugs do not show improved release or loading. Analysis by FTIR does not show substantial incorporation of drug into the polymer. Lastly, bioactivity assays confirmed long‐term stability and release of incorporated antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号