首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 115 毫秒
1.
Qin J  Wheeler AR 《Lab on a chip》2007,7(2):186-192
The soil dwelling nematode, Caenorhabditis (C.) elegans, is a popular model system for studying behavioral plasticity. Noticeably absent from the C. elegans literature, however, are studies evaluating worm behavior in mazes. Here, we report the use of microfluidic mazes to investigate exploration and learning behaviors in wild-type C. elegans, as well as in the dopamine-poor mutant, cat-2. The key research findings include: (1)C. elegans worms are motivated to explore complex spatial environments with or without the presence of food/reward, (2) wild-type worms exhibit a greater tendency to explore relative to mutant worms, (3) both wild-type and mutant worms can learn to make unconditioned responses to food/reward, and (4) wild-type worms are significantly more likely to learn to make conditioned responses linking reward to location than mutant worms. These results introduce microfluidic mazes as a valuable new tool for biological behavioral analysis.  相似文献   

2.
The preparation and utilization of silica nanoparticles as a carrier of tetra-substituted carboxyl iron phthalocyanine (TCFePc, a novel mimetic peroxidase) is reported in this article. Compared with free TCFePc, the experimental results indicated that the TCFePc entrapped in silica nanoparticles exhibited an improved catalytic activity and good reusability. By using tetra-substituted carboxyl iron phthalocyanine-silica nanoparticles (TCFePc-SiO2 Nps) to catalyze the oxidation reaction of thiamine by hydrogen peroxide, a new fluorimetric method was developed for the quantitative analysis of thiamine in pharmaceutical tablets. The influences of different conditions, such as the medium acidity, the reaction time and temperature, the concentrations of reagents and foreign substances, were all investigated. Under the optimum conditions, the calibration graph for thiamine was linear over the range of 5.0 × 10− 9-1.0 × 10− 6 mol L− 1, with a detection limit of 2.0 × 10− 9 mol L− 1. The proposed method was successfully applied to the direct analysis of thiamine in two kinds of pharmaceutical tablets, and offered the advantages of simple pretreatment, rapid determination, high sensitivity and good reusability. Hence, as a carrier of the mimetic enzyme, the silica nanoparticles are effective for enzymatic reaction processes. This method is supposed to be hopeful for the determination of thiamine in other complex raw materials.  相似文献   

3.
A novel apparatus with a simple structure has been developed for introducing samples into the vaporizing chamber of a gas chromatograph. It requires no septum due to the gas sealing structure over the carrier gas supply line. The septum-free injector made it possible to use injection port temperatures as high as 450 degrees C. Repetitive injection of samples with boiling points below 300 degrees C resulted in peak areas with relative standard deviations between 1.25 and 3.28% (n=5) and good linearity (r(2)>0.9942) for the calibration curve. In the analysis of polycyclic aromatic hydrocarbons and a base oil, the peak areas of components with high boiling points increased as the injection port temperature was increased to 450 degrees C.  相似文献   

4.
The evaluation of a micro fluidic system with an integrated silica monolith for performing DNA extraction from limited biological samples has been carried out. Low DNA target concentrations usually require the addition of carrier RNA to ensure desired extraction efficiencies. Here, we demonstrate a micro fluidic extraction system with increasingly efficient extraction performances for biological samples containing <15 ng of total DNA without the need of adding carrier nucleic acids. All extracted DNA showed successful amplification via the polymerase chain reaction demonstrating both the effectiveness of the proposed system at removing potential inhibitors and yielding good quality DNA. The work presented here beneficially identifies reduced sample volumes/concentrations as suitable for processing with respect to downstream analysis by enabling pre-concentration of the biological sample, particularly important when dealing with clinical or forensic specimens.  相似文献   

5.
The inverse‐micellar preparation of Si nanoparticles (Nps) was improved by utilizing sodium naphthalide. The Si Nps were subsequently functionalized with 4‐vinylbenzoic acid for their attachment onto TiO2 films of dye‐sensitized solar cells (DSSCs). The average diameter of the COOH‐functionalized Si (Si? COOH) Nps was 4.6(±1.7) nm. Depth profiling by secondary‐ion mass spectrometry revealed that the Si Nps were uniformly attached onto the TiO2 films. The number of RuII dye molecules adsorbed onto a TiO2 film that was treated with the Si? COOH Nps was 42 % higher than that on the untreated TiO2 film. As a result, DSSCs that incorporated the Si? COOH Nps exhibited higher short‐circuit photocurrent density and an overall energy‐conversion efficiency than the untreated DSSCs by 22 % and 27 %, respectively. This enhanced performance, mostly owing to the intramolecular charge‐transfer to TiO2 from the dye molecules that were anchored to the Si? COOH Nps, was confirmed by comparing the performance with two different RuII–bipyridine dyes (N719 and N749).  相似文献   

6.
In the model organism Caenorhabditis elegans, a family of endogenous small molecules, the ascarosides function as key regulators of developmental timing and behavior that act upstream of conserved signaling pathways. The ascarosides are based on the dideoxysugar ascarylose, which is linked to fatty-acid-like side chains of varying lengths derived from peroxisomal β-oxidation. Despite the importance of ascarosides for many aspects of C. elegans biology, knowledge of their structures, biosynthesis, and homeostasis remains incomplete. We used an MS/MS-based screen to profile ascarosides in C. elegans wild-type and mutant metabolomes, which revealed a much greater structural diversity of ascaroside derivatives than previously reported. Comparison of the metabolomes from wild-type and a series of peroxisomal β-oxidation mutants showed that the enoyl CoA-hydratase MAOC-1 serves an important role in ascaroside biosynthesis and clarified the functions of two other enzymes, ACOX-1 and DHS-28. We show that, following peroxisomal β-oxidation, the ascarosides are selectively derivatized with moieties of varied biogenetic origin and that such modifications can dramatically affect biological activity, producing signaling molecules active at low femtomolar concentrations. Based on these results, the ascarosides appear as a modular library of small-molecule signals, integrating building blocks from three major metabolic pathways: carbohydrate metabolism, peroxisomal β-oxidation of fatty acids, and amino acid catabolism. Our screen further demonstrates that ascaroside biosynthesis is directly affected by nutritional status and that excretion of the final products is highly selective.  相似文献   

7.
This Review discusses the potential usefulness of the worm Caenorhabditis elegans as a model organism for chemists interested in studying living systems. C. elegans, a 1 mm long roundworm, is a popular model organism in almost all areas of modern biology. The worm has several features that make it attractive for biology: it is small (<1000 cells), transparent, and genetically tractable. Despite its simplicity, the worm exhibits complex phenotypes associated with multicellularity: the worm has differentiated cells and organs, it ages and has a well-defined lifespan, and it is capable of learning and remembering. This Review argues that the balance between simplicity and complexity in the worm will make it a useful tool in determining the relationship between molecular-scale phenomena and organism-level phenomena, such as aging, behavior, cognition, and disease. Following an introduction to worm biology, the Review provides examples of current research with C. elegans that is chemically relevant. It also describes tools-biological, chemical, and physical-that are available to researchers studying the worm.  相似文献   

8.
The quantitative structure-activity relationship (QSAR) for neutral carriers used to prepare hydrogen ion sensors has been studied. A series of synthesized carrier compounds were taken as the training set. Five molecular structure parameters of the compounds were calculated by using CNDO/2 algorithm and used as feature variables in constructing QSAR model. The lower and upper limits of the linear pH response range were taken as the activity measure. The corresponding model equations were derived from the stepwise regression procedure. With the established QSAR model, a new pH carrier, (4-hydroxybenzyl) didodecylamine (XIII) was proposed and synthesized. The PVC membrane pH electrode based on carrier XIII with a wide pH linear response range of 2.0-12.5 was prepared. Having a theoretical Nernstian response slope of 57.2 ± 0.3 mV/pH (n = 5 at 25 °C) without a super-Nernstian phenomenon, the sensor had low resistance, short response time, high selectivity and good reproducibility. Moreover, the sensor was successfully applied to detecting the pH value of serum samples.  相似文献   

9.
Shi W  Wen H  Lu Y  Shi Y  Lin B  Qin J 《Lab on a chip》2010,10(21):2855-2863
A droplet-based microfluidic device integrated with a novel floatage-based trap array and a tapered immobilization channel array was presented for characterizing the neurotoxin-induced multiple responses in individual Caenorhabditis elegans (C. elegans) continuously. The established device enabled the evaluations of movement and fluorescence imaging analysis of individual C. elegans simultaneously. The utility of this device was demonstrated by the pharmacological evaluation of neurotoxin (6-hydroxydopamine, 6-OHDA) triggered mobility defects, neuron degeneration and oxidative stress in individual worms. Exposure of living worms to 6-OHDA could cause obvious mobility defects, selective degeneration of dopaminergic (DAergic) neurons, and increased oxidative stress in a dose dependent manner. These results are important towards the understanding of mechanisms leading to DAergic toxicity by neurotoxin and will be of benefit for the screening of new therapeutics for neurodegenerative diseases. This device was simple, stable and easy to operate, with the potential to facilitate whole-animal assays and drug screening in a high throughput manner at single animal resolution.  相似文献   

10.
Overexposure to ultraviolet (UV) with high energy can not only hurt human skin but also accelerate the degradation of organic matter. Hence, the preparation of polymer‐based UV‐shielding nanocomposites has attracted substantial attention due to the low cost, easy processing and wide applications. Notably, the highly efficient UV‐shielding polymer nanocomposites are still hindered by the agglomeration of inorganic anti‐UV nanoparticles (Nps) in polymer matrix and the narrow absorption range of UV‐shielding agents. To overcome the aforementioned bottlenecks, surface engineering of anti‐UV Nps including organic modification and inorganic hybridization has been extensively employed to enhance the UV‐shielding efficiency of composites. Herein, to deliver the readers a comprehensive understanding of the surface engineering of anti‐UV Nps, we systematically summarize the recent advances in surface organic modification and inorganic hybridization related to anti‐UV Nps. The UV‐shielding mechanism and the factors affecting UV‐shielding efficiency of polymer nanocomposites are also discussed. Finally, perspectives on remaining challenges and future development of highly efficient UV‐shielding composites are outlined.  相似文献   

11.
尹方超  温慧  朱国丽  秦建华 《色谱》2016,34(11):1031-1042
秀丽隐杆线虫具有体积小、生命周期短、结构简单和高基因保守性等特点,是生命科学研究领域中的一种重要模式生物。微流控芯片的通道尺寸与线虫大小相匹配,并可实现灵活集成的线虫操控,为线虫研究提供了一种全新的平台。在微流控平台上,线虫长期培养、固定、分选、精确刺激传递和单线虫包裹等单元操作已经实现,并被应用于线虫神经生物学、行为学、衰老及发育、药物筛选等研究中。该文着重介绍近几年基于微流控芯片技术的线虫研究最新进展,并对其应用前景予以展望。  相似文献   

12.
Transmembrane anion transport is an important biological process in maintaining cellular functions. Thus, synthetic anion transporters are widely developed for their biological applications. Imidazolinium was introduced as anion recognition site to a multiblock amphiphilic structure that consists of octa(ethylene glycol) and aromatic units. Ion transport assay using halide-sensitive lucigenin and pH-sensitive 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) revealed that imidazolinium-based multiblock amphiphile ( IMA ) transports anions and showed high selectivity for nitrate, which plays crucial roles in many biological events. Temperature-dependent ion transport assay using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) indicated that IMA works as a mobile carrier. 1H NMR titration experiments indicated that the C2 proton of the imidazolinium ring recognizes anions via a (C−H)+⋅⋅⋅X hydrogen bond. Furthermore, all-atom molecular dynamics simulations revealed a dynamic feature of IMA within the membranes during ion transportation.  相似文献   

13.
A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.  相似文献   

14.
Caenorhabditis elegans nematode has emerged as a model organism paving the ways for multidisciplinary research in biomedical, environmental toxicology, aging, metabolism, obesity, and drug discovery. The wide range of applications of this model organism are attributed to C. elegans’ unique features: C. elegans are inexpensive, easy to grow and maintain in a laboratory, has a short lifespan, and has a small body size. With this increased interest, the need for analytical techniques to assess the biochemical information on intact worms continues to grow. Fourier Transform Infrared (FTIR) microspectroscopy is considered as a powerful technique that can be used to determine the chemical structure and composition of various materials, including biological samples. Furthermore, the development of focal plane array detectors has made this technique attractive to study complex biological systems such as whole nematodes. This review focuses on the use of FTIR microspectroscopy to study C. elegans. The first published work on the use of FTIR microspectroscopy to study a complex whole animal was reported in 2004. Since then, very few other studies were carried out. The objective of this review is to summarize work conducted to date using FTIR microspectroscopy to study nematodes and to discuss the information that can be gained by using this technique. This could allow scientists to add this technique to the arsenal of techniques already in use for C. elegans studies.  相似文献   

15.
Russian Journal of General Chemistry - Here we report the studies on selenium coordination compounds, in particular selenium nanoparticles (Nps), that can be used in pharmacology. The Se Nps were...  相似文献   

16.
Capacitive energy storage has advantages of high power density, long lifespan, and good safety, but is restricted by low energy density. Inspired by the charge storage mechanism of batteries, a spatial charge density (SCD) maximization strategy is developed to compensate this shortage by densely and neatly packing ionic charges in capacitive materials. A record high SCD (ca. 550 C cm?3) was achieved by balancing the valance and size of charge‐carrier ions and matching the ion sizes with the pore structure of electrode materials, nearly five times higher than those of conventional ones (ca. 120 C cm?3). The maximization of SCD was confirmed by Monte Carlo calculations, molecular dynamics simulations, and in situ electrochemical Raman spectroscopy. A full‐cell supercapacitor was further constructed; it delivers an ultrahigh energy density of 165 Wh L?1 at a power density of 150 WL?1 and retains 120 Wh L?1 even at 36 kW L?1, opening a pathway towards high‐energy‐density capacitive energy storage.  相似文献   

17.
Abstract— The partial destruction of the earth's protective ozone layer has raised concerns about the impact of increased UV radiation on the earth's biological systems. In this study, polychromatic light sources were employed to observe the biological responses of the soil nematode Caenorhabditis elegans to simulated solar UV. Using various filter combinations, action spectra were constructed that approximated those generated previously with monochromatic radiation. In both cases, a mutant strain ( rad-3 ) progressively lost its hypersensitivity as shorter wavelengths were filtered out. In addition, both wild type and radiation-sensitive ( rad ) mutants were irradiated with several combinations of filtered light sources in the presence and absence of two exogenous photosensitizers (ethidium bromide and bromodeoxyuridine). Treatment with either of the introduced photosensitizers increased photosensitivity to solar UV. Solar UV also induced a fluence-dependent reduction in fertility in wild-type animals. These experiments extend previous data and substantially expand our understanding of the biological responses of C. elegans to solar radiation.  相似文献   

18.
《Electroanalysis》2017,29(3):765-772
Stable magnetic nanocomposite of gold nanoparticles (Au‐NPs) decorating Fe3O4 core was successfully synthesized by the linker of Boc‐L‐cysteine. Transmission electron microscope (TEM), energy dispersive X‐ray spectroscopy (EDX) and cyclic voltammograms (CV) were performed to characterize the as‐prepared Fe3O4@Au‐Nps. The results indicated that Au‐Nps dispersed homogeneously around Fe3O4 with the ratio of Au to Fe3O4 nanoparticles as 5–10/1 and the apparent electrochemical area as 0.121 cm2. After self‐assembly of hemoglobin (Hb) on Fe3O4@Au‐Nps by electrostatic interaction, a hydrogen peroxide biosensor was developed. The Fe3O4@Au‐Nps/Hb modified GCE exhibited fast direct electron transfer between heme center and electrode surface with the heterogeneous electron transfer rate constant (Ks ) of 3.35 s−1. Importantly, it showed excellent electrocatalytic activity towards hydrogen peroxide reduction with low detection limit of 0.133 μM (S /D =3) and high sensitivity of 0.163 μA μM−1, respectively. At the concentration evaluated, the interfering species of glucose, dopamine, uric acid and ascorbic acid did not affect the determination of hydrogen peroxide. These results demonstrated that the introduction of Au‐Nps on Fe3O4 not only stabilized the immobilized enzyme but also provided large surface area, fast electron transfer and excellent biocompatibility. This facile nanoassembly protocol can be extended to immobilize various enzymes, proteins and biomolecules to develop robust biosensors.  相似文献   

19.
MicroRNAs are small approximately 22 nucleotide regulators of numerous biological processes and bind target gene messenger RNAs to control gene expression. The C. elegans microRNA let-7 and its target lin-41 were the first microRNA::target interaction to be validated in vivo. let-7 molecules form imperfect duplexes with two required let-7 complementary sites in the lin-41 3' UTR. Here, we show that base pairing at both the 5' and 3' ends of the let-7 binding site, as well as the presence of unpaired RNA residues in the predicted duplexes, are required for lin-41 downregulation. In this study, our model for microRNA::target interactions also demonstrates that the context of a microRNA binding can be critical for function, revealing an unforeseen complexity in microRNA::target interactions.  相似文献   

20.
陈文彬  张耀谋  金桂玉 《化学学报》2002,60(7):1303-1310
利用2-(1H-1,2,4-三唑-1-基)-2-丙烯-1-酮(2)与取代硫酚或含巯基的 杂环化合物进行1,4-亲核加成,得到目标化合物3,其结构经元素分析、核磁和红 外光谱所证实,并对其进行了生物活性的测试,发现大部分化合物具有很好的抑菌 活性。结构与活性的关系表明不同的R~1取代对其生物活性有较大的影响,当R~1 = (CH_3)_3C时,对小麦锈病的抑制活性要高于R~1 = Ar的活性,而Ar上不同的 取代基对其活性影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号