首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   587篇
  免费   122篇
  国内免费   241篇
化学   206篇
晶体学   6篇
力学   399篇
综合类   8篇
数学   59篇
物理学   272篇
  2024年   6篇
  2023年   29篇
  2022年   19篇
  2021年   26篇
  2020年   34篇
  2019年   26篇
  2018年   15篇
  2017年   29篇
  2016年   36篇
  2015年   27篇
  2014年   66篇
  2013年   43篇
  2012年   38篇
  2011年   72篇
  2010年   37篇
  2009年   49篇
  2008年   47篇
  2007年   37篇
  2006年   28篇
  2005年   32篇
  2004年   31篇
  2003年   31篇
  2002年   21篇
  2001年   21篇
  2000年   16篇
  1999年   10篇
  1998年   16篇
  1997年   14篇
  1996年   15篇
  1995年   15篇
  1994年   12篇
  1993年   9篇
  1992年   16篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1987年   3篇
  1982年   1篇
排序方式: 共有950条查询结果,搜索用时 93 毫秒
21.
用WAXD和SAXS研究交联1,4-顺式聚丁二烯的取向结晶。结果表明:该试样在拉伸状态时,形成折叠链片晶,而不是伸直链纤维晶。片晶之间断产生新的片晶,使长周期减小,并且片晶的横向尺寸不断增大,由此导致结晶度增大。  相似文献   
22.
最近Ruamps和同事发现三角双锥构型的Ni(Ⅱ)配合物[Ni(Me6tren)Cl]ClO41,Me6tren=tris(2-(dimethylamino)ethyl)amine)具有大的单轴磁各向异性(J.Am.Chem.Soc.,2013,135:3017-3026)。他们利用HF-EPR研究获得横向零场分裂(ZFS)参数E=1.56(5)cm-1但未能确定轴向零场分裂参数D。在本工作中,我们利用0~17.5 T和5 K的变磁场远红外光谱(FIRMS)来检测自旋基态S=1中的MS=±1和MS=0态之间的磁跃迁。在FIRMS中直接观察到Zeeman分裂态之间的跃迁,得出轴向ZFS参数D=-110.7(3)cm-1。我们对1的晶体结构进行了Hirshfeld表面分析,揭示了1分子中的阳离子与阴离子之间以及分子之间的相互作用。  相似文献   
23.
介电弹性体在电场作用下将产生形变,为获得高的变形能,需对介电弹性体施以较强的电场,而强电场的施加可能诱发力电耦合失稳导致失效。针对光热敏感介电凝胶力电耦合变形行为,基于热力学和连续介质力学理论建立力电耦合变形模型,分析了光强、温度以及预拉伸对光热敏感介电凝胶力电耦合变形行为的影响,结果表明:无预拉伸时,随着电场强度的增大,光热敏感介电凝胶最终发生力电失稳,光强越小、温度越低发生力电失稳时的临界电压越高;预拉伸可显著改善力电稳定性,施加等双轴预拉伸后,凝胶厚度方向的伸长率显著变小,电场强度随电位移增大而线性增大,未出现力电失稳现象。  相似文献   
24.
以1,4-双(二苯基膦)丁烷为交联剂,以具有四甲基联苯结构的聚芳醚酮为基体材料,分别制备了刚性三苯基膦和柔性三丁基膦修饰的阴离子交联膜材料.交联剂在交联结构形成的过程中转变成季膦盐,在提高膜材料机械稳定性的同时保持离子交换功能基团的含量.研究了2种阴离子交换膜的尺寸稳定性、电导率、机械性能及耐碱稳定性等.研究结果表明,当交联度为20%时,三苯基膦与三丁基膦修饰的阴离子交换膜的拉伸强度分别由未交联时的27和18 MPa提高到45和30 MPa;交联的膜材料在60℃的3 mol/L KOH溶液中浸泡120 h后,三苯基膦修饰的阴离子交换膜的电导率保留率为81%,三丁基膦修饰的阴离子交换膜的电导率保留率为69%,膜的耐碱稳定性均较未交联时有明显提高.交联度相同时,三苯基膦修饰的阴离子交换膜表现出更高的拉伸强度和更好的耐碱稳定性.  相似文献   
25.
固体材料在冲击拉伸载荷作用下常常会断裂成多个碎片(碎片化),固体材料碎片化的物理机制是多点损伤同时在固体中成核和发展,导致固体多处破坏。自 Mott 对固体的动态碎裂问题进行了开创性研究后,几十年来,对固体动态碎裂机制的研究一直是应用物理学、力学、航天和兵器工程等领域共同关心的重要课题。本文介绍了在冲击拉伸载荷作用下固体的动态碎裂研究的发展历史,给出相关的理论分析、实验研究和数值模拟的研究进展,特别针对现有的各种关于碎片尺度、碎片分布、以及碎片化物理机制的理论模型进行了较详尽的阐述和讨论,最后指出现有实验和理论研究中仍然存在的关键科学问题及进一步的研究展望。  相似文献   
26.
合成了氯代1-(2-羟乙基)-3-甲基咪唑离子液体[He MIM]Cl、溴代1-乙胺基-3-甲基咪唑离子液体[Ae MIM]Br和氯代1-羧乙基-3-甲基咪唑离子液体[Ce MIM]Cl 3种功能化咪唑离子液体,并分别进行了红外与氢核磁结构表征.然后用3种离子液体液化木粉,液化3 h后向体系直接加入苯酚、甲醛和氢氧化钠,制备酚醛复合材料,并采用FTIR、XRD、DSC和SEM对酚醛复合材料进行结构、性能与形貌测试,研究离子液体种类对木粉液化率及酚醛树脂性能的影响.结果表明,离子液体及其液化木粉产物制备的酚醛复合材料性能得到明显改善.[Ce MIM]Cl液化效果最好,90℃液化率高达24.6%,当[Ce MIM]Cl与木粉质量比为10∶1时,制备的酚醛复合材料的游离醛释放量由原来的3.64%降低到0.92%.离子液体[Ae MIM]Br能将酚醛复合材料的冲击强度由原来的0.93 k J/m2提高到6.96 k J/m2,而[Ae MIM]Br及其液化的木粉产物制备的酚醛复合材料拉伸强度从原来的3.28 MPa提高到9.70 MPa.  相似文献   
27.
中国聚变工程实验堆水冷包层钢构件流道成形控制研究   总被引:1,自引:0,他引:1  
针对CFETR水冷包层流道钢构件热等静压制备时易变形压塌问题,利用单轴扩散焊设备开展了焊接工艺参数优化试验。在此基础上,重新设计了流道焊接界面位置和尺寸,用两步热等静压扩散焊法制备出了流道变形可控的平板型第一壁钢构件模块。优化试验表明,低活化钢试样的固相扩散焊温度需高于950℃,焊后经过760℃/60min回火热处理试样力学性能可以得到有效回复。  相似文献   
28.
基于Lagoudas形状记忆合金(SMA)三维本构模型,假设材料为各向同性,推导了SMA平面应力状态的增量型本构方程,继而编写了ABAQUS用户自定义材料(UMAT)子程序,研究了在双向拉伸情况下,外载荷、温度、椭圆孔口长短轴之比对超弹性SMA椭圆孔口板中应力诱发马氏体相变区的影响。数值结果表明:应力诱发马氏体相变首先发生在椭圆孔口长轴端点部位,在外加载荷作用下逐渐扩展到板内,并由内向外形成马氏体相区、相变混合区和奥氏体相区;SMA板内应力诱发马氏体完全相变区面积与施加外载荷成正相关,与温度成负相关;随着椭圆孔口长短轴之比增大,SMA板内应力诱发马氏体完全相变区面积呈现出先减小后增大的趋势;拉应力差值相同时,相较于拉应力沿椭圆孔口长轴方向较大的情况,当拉应力沿椭圆孔口短轴方向较大时,SMA板内完全相变区面积较大,椭圆孔口周边应力集中现象更明显。  相似文献   
29.
2H NMR 和PFG-NMR 用于研究拉伸过程中Nafion 结构的改变以及对溶剂分子运动性质的影响.2H 谱表明单轴拉伸Nafion 膜在拉伸比率较低情况下(L < 5),通道排列取向程度随着拉伸比率变大而增大,同时扩散实验表明水分子的运动能力也得到增强,表明取向化的通道网络有助于增强材料取向方向质子的导电能力,可以用于提高质子膜材料性能.在取向达到最大值后(L≥5)继续拉伸,膜内水分子的移动能力相比略有降低.溶胀实验表明取向膜的溶胀行为呈各向异性,拉伸作用致使膜内通道沿拉伸方向取向排列,通道的取向效应使得其在垂直拉伸方向(Y)和膜厚度方向(Z)溶胀更为显著.拉伸Nafion 膜对甲醇的吸附能力随着拉伸比率的增加而增强,同时甲醇的扩散数据显示,甲醇的运动能力在该通道网络中也随着拉伸比率的变大而不断增强,甲醇燃料在该类质子膜内的渗透效
应得以增强,不利于其在直接甲醇燃料电池中的应用.  相似文献   
30.
先用乙烯基三甲氧基硅烷(A-171)和二甲肼改性并还原氧化石墨烯(GO),制备A-171功能化的石墨烯(FG).研究结果表明A-171与GO上的羟基发生了反应,以共价键连接到了石墨烯的表面;FG能在四氢呋喃中均匀分散并且剥离成厚度约为0.9 nm的单一片层,其干燥后表面呈褶皱状.然后将FG与双组分硅树脂用溶液共混法制备了FG/硅树脂纳米复合材料.运用X射线衍射、扫描电子显微镜、动态热机械分析、拉伸试验等手段分析了复合材料的形态与性能,结果表明,与未处理过的石墨烯相比,FG在复合材料中有更好的分散和更强的界面作用.含0.5 wt%FG的复合材料的拉伸强度较硅树脂提高了87.7%,玻璃化温度提高了23.9℃,失重5%时的温度也提高了20.1℃.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号