首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16315篇
  免费   2485篇
  国内免费   1812篇
化学   15769篇
晶体学   204篇
力学   997篇
综合类   87篇
数学   134篇
物理学   3421篇
  2024年   23篇
  2023年   200篇
  2022年   371篇
  2021年   734篇
  2020年   1007篇
  2019年   785篇
  2018年   715篇
  2017年   848篇
  2016年   1106篇
  2015年   1111篇
  2014年   1167篇
  2013年   1500篇
  2012年   1273篇
  2011年   1230篇
  2010年   948篇
  2009年   1002篇
  2008年   889篇
  2007年   943篇
  2006年   803篇
  2005年   681篇
  2004年   589篇
  2003年   558篇
  2002年   427篇
  2001年   328篇
  2000年   310篇
  1999年   230篇
  1998年   139篇
  1997年   134篇
  1996年   107篇
  1995年   88篇
  1994年   83篇
  1993年   49篇
  1992年   57篇
  1991年   35篇
  1990年   34篇
  1989年   21篇
  1988年   20篇
  1987年   8篇
  1986年   9篇
  1985年   10篇
  1984年   11篇
  1983年   6篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1976年   3篇
  1971年   3篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.
Fabrication of bioactive nanomaterials with improved stability and low toxicity towards healthy mammalian cells have recently been a topic of interest. Bioactive metal nanomaterials such as silver nanoparticles (AgNPs) tend to lose their stability with time and become toxic to some extent, limiting their biological applications. AgNPs were separately encapsulated and loaded on the surface of a biocompatible polydopamine (PDA) to produce Ag-PDA and Ag@PDA nanocomposites to unravel the issue of agglomeration. PDA was coated through the self-polymerization of dopamine on the surface of AgNPs to produce Ag-PDA core-shells nanocomposites. For Ag@PDA, PDA spheres were first designed through self-polymerization of dopamine followed by in situ reduction of silver nitrate (AgNO3) without any reductant. AgNPs sizes were controlled by varying the concentration of AgNO3. The TEM micrograms showed monodispersed PDA spheres with an average diameter of 238 nm for Ag-PDA and Ag@PDA nanocomposites. Compared to Ag@PDA, Ag-PDA nanocomposites have shown insignificant toxicity towards human embryonic kidney (HEK-293T) and human dermal fibroblasts (HDF) cells with cell viability of over 95% at concentration of 250 µg/mL. A excellent antimicrobial activity of the nanocomposites was observed; with Ag@PDA possessing bactericidal effect at concentration as low as 12.5 µg/mL. Ag-PDA on the other hand were only found to be bacteriostatic against gram-positive and gram-negative bacteria was also observed.  相似文献   
992.
In the current study, a green and facile route for the synthesis of iron nanoparticles (FeNPs) was adopted. The FeNPs were fabricated via a single step green route using aqueous leaves extract of Plumeria obtusa (P. obtusa) as a capping/reducing and stabilizing agents. The FeNPs were characterized by UV/Vis (Ultraviolet/Visible), FTIR (Fourier Transform Infra-Red spectroscopy), TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy) and XRD (X-Ray Diffraction) techniques. The FeNPs were of spheroidal shape with average size of 50 nm. The biosynthesized FeNPs were further evaluated for their biological activities like antimicrobial, antioxidant and biocompatibility. The FeNPs displayed auspicious antimicrobial activity against bacterial (E. coli, B. subtilis) and fungal strains (A. niger) and S. commune. The test performed against red blood cells (RBCs) lysis (1.22 ± 0.02%) and macrophage (31 ± 0.09%) showed biocompatible nature of FeNPs. In vitro cytotoxicity against AU565 (82.03 ± 0.08–23.65 ± 0.065%) and HeLa (88.61 ± 0.06–33.34 ± 0.06%) cell lines showed cell viability loss in dose dependent manner (FeNPs 25–100 μg/mL). The antioxidant activities values were determined through DPPH, TRPA, NO and H2O2 assays with values 70.23 ± 0.02%, 76.65 ± 0.02 μg AAE/mg, 74.43 ± 0.04% and 67.34 ± 0.03%, respectively. Based on the bioactivities, the green synthesized FeNPs have potential for therapeutic applications.  相似文献   
993.
In the recent study, we decided to survey the capacities of metallic nanoparticles formulated by Allium monanthum (AgNPs) as a novel chemotherapeutic drug in the treatment of several types of breast cancers. Characterization of AgNPs was done by UV–Visible Spectroscopy (UV–Vis), Fourier Transformed Infrared Spectroscopy (FT‐IR), Transmission Electron Microscopy (TEM), and Field Emission Scanning Electron Microscopy (FE‐SEM). For investigating the antioxidant properties of AgNO3, Allium monanthum, and AgNPs, the DPPH test was used in the presence of butylated hydroxytoluene as the positive control. To survey the cytotoxicity and anti-breast cancer effects of AgNO3, Allium monanthum, and AgNPs, MTT assay was used on the breast adenocarcinoma (MCF7), breast carcinoma (Hs 578Bst), infiltrating ductal cell carcinoma (Hs 319.T), infiltrating lobular carcinoma of breast (UACC-3133), inflammatory carcinoma of the breast (UACC-732), and metastatic carcinoma (MDA-MB-453) cell lines. DPPH test revealed similar antioxidant potentials for Allium monanthum, AgNPs, and butylated hydroxytoluene. Silver nanoparticles had very low cell viability and anti-breast cancer properties dose-dependently against MCF7, Hs 578Bst, Hs 319.T, UACC-3133, UACC-732, and MDA-MB-453 cell lines without any cytotoxicity on the normal cell line. The best result of anti-breast cancer properties of AgNPs against the above cell lines was seen in the case of the UACC-3133 cell line. According to the above findings, the silver nanoparticles containing Allium monanthum aqueous extract can be administrated in humans for the treatment of several types of breast cancer especially breast adenocarcinoma, breast carcinoma, infiltrating ductal cell carcinoma, infiltrating lobular carcinoma of breast, inflammatory carcinoma of the breast, and metastatic carcinoma.  相似文献   
994.
A magnetically separable palladium nanocatalyst has been synthesized through the immobilization of palladium onto 3-aminopropylphenanthroline Schiff based functionalized silica coated superparamagnetic Fe3O4 nanoparticles. The nanocatalyst (Fe3O4@SiNSB-Pd) was fully characterized using several spectroscopic techniques, such as FT-IR, HR-SEM, TEM, XRD, ICP, and XPS. The microscopic image of Fe3O4 showed spherical shape morphology and had an average size of 150 nm. The Pd-nanoparticles exhibited an average size 3.5 ± 0.6 nm. The successful functionalization of Fe3O4@SiNSB-Pd was identified by FT-IR spectroscopy and the appearance of palladium species in Fe3O4@SiNSB-Pd was confirmed by XRD analysis. While XPS has been utilized for the determination of the chemical oxidation state of palladium species in Fe3O4@SiNSB-Pd. Several activated and deactivated arene halides and olefines were employed for Mizoroki-Heck cross-coupling reactions in the presence of Fe3O4@SiNSB-Pd, each of which produced the respective cross-coupling products with excellent yields. The Fe3O4@SiNSB-Pd shows good reactivity and reusability for up to seven consecutive cycles.  相似文献   
995.
Multidrug resistance (MDR) is one of the major global threats of this century. So new innovative approaches are needed for the development of existing antibiotics to limit antibacterial resistance. The current study was aimed to utilize extracts of root, stem, and leaves of Persicaria hydropiper for the synthesis of silver nanoparticles (AgNPs) using standard procedure. Synthesis of AgNPs was evident from the change in color of the solution to dark brownish and then it was further revealed by UV–Vis and Fourier Transformed Infrared Spectroscopy (FTIR). UV–Vis spectroscopy has revealed absorbance peak at 370 nm while, FTIR spectrum displayed that aromatics amines were used as reducing agent in the fabrication of AgNPs. In addition, Scanning Electron Microscopy (SEM micrograph) displaying tetrahedron, spherical and oval shapes of synthesized AgNPs whereas, average size of synthesized AgNPs was found in the range of 32–77 nm. Beside this, it was also observed that the potency of antibiotics against MDR bacteria increased after coating with synthesized AgNPs i.e., the potency of Ceftazidime and Ciprofloxacin increased up to 450% and 500% against Bacillus respectively while, the potency of Gentamicin, Vancomycin and Linezolid increased up to 150%, 200% and 58% against Bacillus, Staphylococcus, and Proteus species respectively. Furthermore, it was concluded that utilizing AgNPs in combination with commercially available antibiotics would provide an alternate therapy for the treatment of infectious diseases caused by MDR bacteria.  相似文献   
996.
This article reports a surface plasmon resonance (SPR) strategy capable of label-free yet amplified in situ immunoassays for sensitive and specific detection of human IgG (hIgG), a serum marker that is important for the diagnosis of certain diseases. Primarily, a wavelength-modulated Kretschman configuration SPR analyzer was constructed, and Au film SPR biosensor chips were fabricated. Specifically, based on Au nanoparticles (AuNPs) adsorbed on the surface of the Au film, the AuNP/Au film was coated with polydopamine (PDA) to fix streptavidin (SA), and then the biotinylated antibodies were connected to the surface of the biosensor chip. The SPR analyzer was utilized for in situ real-time monitoring of hIgG. Due to the immunological recognition between the receptor and target, the surface plasmon waves produced by the attenuated total reflection were affected by the changes in the surface of the biosensor chip. The resonance wavelength (λR) of the output spectra gradually redshifted, and the redshift degrees were directly related to the target concentration. The biosensor can realize the in situ detection of hIgG, displaying satisfactory sensitivity, excellent specificity and stability. Briefly, by monitoring the shift in λR after specific binding, a new SPR immunoassay can be customized for label-free, in situ and amplified hIgG detection. The operating principle of this research could be extended as a common protocol for many other targets of interest.  相似文献   
997.
In this study, titanium dioxide nanoparticles (NPs) were synthesized using the home microwave method, and the effect of the microwave irradiation time on the structure of NPs was investigated. In addition, the morphological effect of these NPs on the toxicity of HDMSCs cells was investigated. The crystalline structure and morphology of the NPs were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM); the cytotoxicity was determined by the methyl thiazolyl tetrazolium (MTT) assay. X-ray diffraction analysis revealed that all thin films had a polycrystalline nature with an anatase phase of TiO2. It was also found that the crystallite size increased with increasing microwave radiation time. The FTIR spectrum showed Ti-O-Ti properties by the peak in the range between 527 and 580 cm?1. Further, the FE-SEM images showed that the grain size increased with increasing irradiation time. The MTT assay results showed that the accumulation of NPs leads to toxicity.  相似文献   
998.
An efficient hydrazine substitution of p-nitro-aryl fluorides with hydrazine hydrates catalyzed by FeO(OH)@C nanoparticles is described. This hydrazine substitutions of p-nitro-aryl fluorides bearing electron-withdrawing groups proceeded efficiently with high yield and selectivity. Similarly, hydrogenations of p-nitro-aryl fluorides containing electron-donating groups also smoothly proceeded under mild conditions. Furthermore, with these prepared aryl hydrazines, some phthalazinones, interesting as potential structures for pharmaceuticals, have successfully been synthesized in high yields.  相似文献   
999.
The rotator cuff repaired construct must establish a contiguous and functioning tendon-bone junction to provide adequate stability. However, fibrocartilage deficiency and bone loss were hardly reversed after physical suture, especially in chronic rotator cuff tears. In this study, we synthesized an injectable methylcellulose/polyvinyl alcohol/polyvinylpyrrolidone-based thermo-sensitive hydrogel, which delivered kartogenin-loaded mesoporous bioactive glass nanoparticles. Physicochemical studies the revealed phase transition temperatures of 35 °C and its ability to induce chondrogenesis and osteogenesis differentiation of tendon-derived stem cells. Furthermore, experiments in rabbit chronic rotator cuff tears model confirmed the fibrocartilage and bone layer regenerative capability of the injected bioactive hydrogel, which could, in turn, support the ultimate tensile stress of the repaired rotator cuff. The bioactive agents-loaded hydrogel reported in this study is a valuable addition to the arsenal of biomaterials in applications to chronic tendon-bone junction injuries.  相似文献   
1000.
Ferrocene (Fc)-based systems are frequently used as burning rate catalysts in the decomposition of ammonium perchlorate (AP)-based propellants. However, small Fc derivatives migrate to the surface of the propellant resulting in undesirable changes in the designed burning parameters and unstable combustion. To retard the migration and to increase the combustion rate of AP, fourth-generation polyamidoamine (PAMAM) dendrimers modified with Fc (PAMAM generation 4 [G4]-Fc) were synthetized and used as support for the obtention of copper nanoparticles (CuNPs). PAMAM G4 produced smaller nanoparticles (1–2 nm) with lower aggregation than PAMAM G4-Fc (12–14 nm). X-ray photoelectron spectroscopy (XPS) characterization confirmed the superior stabilizing and protecting effect against oxidation of CuNPs by PAMAM G4 in comparison to PAMAM G4-Fc, whereas molecular dynamics simulations have shown less flexibility and lower presence of stabilizing sites for nanoparticles in PAMAM G4-Fc. Antimigration tests confirmed the negligible migration of PAMAM G4-Fc compared with Fc, whereas PAMAM G4-Fc|CuNP affected the high-temperature decomposition of AP positively, decreasing the decomposition temperature in 87 °C owing to a synergistic effect between CuNPs and Fc. PAMAM G4-Fc can act both as an effective antimigration system of Fc and as a stabilizing framework of metal nanoparticles with application as catalysts of AP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号