首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of ferrocene‐modified poly(glycidyl methacrylate) (PGMA‐Fc) compounds were synthesized and applied as burning rate catalysts in simulative solid propellant to overcome migration problems. 1H NMR and Fourier transform infrared spectroscopies and gel permeation chromatography were used to characterize the synthesized polymers. Their electrochemical behavior was evaluated using cyclic voltammetry. Their catalytic performance for the decomposition of ammonium perchlorate (AP) was investigated using thermogravimetric analysis. Anti‐migration studies were conducted in migration tubes under 50°C. The results show that PGMA‐Fc has a good catalytic effect on lowering the thermal decomposition temperature of AP. Anti‐migration studies show that PGMA‐Fc has better anti‐migration performance than ferrocene and catocene.  相似文献   

2.
Ferrocene-based (Fc-based) burning rate catalysts (BRCs) play an essential role in the solid rocket propellants. However, the migration problem during curing and storage limits their applications. To retard the migration problems of Fc-based BRCs and to increase the burning rate (BR) of AP-based propellants, Fc-based esters compounds (Es-Fcs) were synthesized. The synthesized Es-Fcs were characterized by X-ray diffraction, proton nuclear magnetic resonance (1H NMR),13C NMR and Fourier transform infrared (FT-IR) spectroscopy. The electrochemical behaviors of Es-Fcs were investigated by cyclic voltammetry (CV). The BR catalytic activity of Es-Fcs on thermal decomposition of AP were examined by thermogravimetry (TG). Thermal analysis results showed that these Es-Fcs had good BR catalytic effects on thermal decomposition of AP. It was found that the anti-migration performance of Es-Fcs were better than catocene and Fc.  相似文献   

3.
Ferrocene‐based derivatives show potential application as burning rate catalysts (BRCs) for solid composite propellants. However, migration problems of simple ferrocene‐based derivatives limit their application as BRCs in solid composite propellants. To overcome the migration problems of ferrocene‐based BRCs and to enhance the burning rate of ammonium perchlorate (AP)‐based propellants, zero‐ to second‐generation tris(2‐aminoethyl)amine‐based ferrocene‐terminated dendrimers (G0, G1 and G2) were synthesized. The structures of G0, G1 and G2 were confirmed using 1H NMR, Fourier transform infrared and UV–visible spectroscopies. The electrochemical behavior of G0, G1 and G2 was investigated using cyclic voltammetry. It was found that G0, G1 and G2 showed redox behavior due to the presence of ferrocene and this redox behavior was diffusion controlled over the investigated scan range. The burning rate catalytic effect of G0, G1 and G2 on thermal decomposition of AP was investigated using thermogravimetry and differential thermogravimetry. G0, G1 and G2 showed good catalytic effect on the thermal decomposition of AP. Anti‐migration studies showed that migration of G0, G1 and G2 was much slower than that of 2,2‐bis(ethylferrocenyl)propane (catocene) and ferrocene.  相似文献   

4.
In this report, CuO/MoS2 composites were successfully prepared by the hydrothermal method where nano‐sized CuO was uniformly distributed on the surface of hierarchical MoS2 substrates (CuO/MoS2 composites). Their physicochemical properties and catalytic performance in ammonium perchlorate (AP) decomposition were investigated and characterized by XRD, SEM, TEM, BET, XPS, TG/DSC and combustion measurement. The results showed that it could decrease AP decomposition temperature at high decomposition stage from 416.5 °C to 323.5 °C and increase the heat release from 378 J/g (pure AP) to 1340 J/g (AP with catalysts), which was better than pure CuO nanoparticles (345.5 °C and 1046 J/g). Meanwhile, it showed excellent performance in combustion reaction either in N2 or air atmosphere. The results obtained by photocurrent spectra, photoluminescence spectra and time‐resolved fluorescence emission spectra indicated that loading CuO mediated the generation rate and combination rate of electrons and holes, thus tuning the catalytic performance on AP decomposition. This study proved that employing the supports that can synergistically interact with CuO is an efficient strategy to enhance the catalytic performance of CuO.  相似文献   

5.
To overcome migration problems of ferrocene‐based burning rate catalysts and to enhance burning rate of ammonium perchlorate (AP)‐based propellants, eleven ferrocene‐based compounds ( 1 – 11 ) were synthesized by the condensation reaction of ferrocenecarbonyl chloride with corresponding amines and alcohols. The synthesis of 1 – 11 was confirmed using 1H NMR, Fourier transform infrared and UV–visible spectroscopy. Their electrochemical properties were analyzed using cyclic voltammetry. The compounds showed redox behavior due to the presence of ferrocene. Their catalytic behavior in the thermal decomposition of AP was investigated using thermogravimetry (TG) and differential TG (DTG). In the presence of 5 wt% 1 – 11 , the thermal decomposition temperature of AP was significantly decreased. TG and DTG analyses showed that 1 – 11 had a good catalytic effect in the thermal decomposition of AP. Anti‐migration studies showed that migration of 1 – 11 was slower than that of 2,2‐bis(ethylferrocenyl)propane (catocene) and ferrocene. The effect of the presence of polar elements like oxygen and nitrogen on anti‐migration behavior of small ferrocene‐based compounds was also investigated. Oxygen‐containing compounds showed better anti‐migration behavior than nitrogen‐containing compounds.  相似文献   

6.
以3.5 G PAMAM(3.5代聚酰胺-胺型)树状大分子为保护剂,利用微波法还原HAuCl4溶液制备金纳米粒子.考察了当3.5 G PAMAM与HAuCl4物质的量的比一定时,微波照射不同时间对金纳米粒子大小及形状的影响;以及同一照射条件下,3.5 G PAMAM与HAuCl4不同的物质的量比值对金纳米粒子大小及形状的影响.利用紫外可见分光光度计、透射电子显微镜对其进行了表征.结果表明,当3.5 G PAMAM与HAuCl4物质的量的比值一定时,金纳米粒子的形状和大小受微波照射时间长短的影响不大;适当延长照射时间,制得的金纳米粒子的分散性较好.在相同照射条件下,随着3.5 G PAMAM与HAu-Cl4物质的量比值的减小,得到的金纳米粒子粒径逐渐变大,且分散性变差.  相似文献   

7.
Alkyl‐substituted ferrocene‐based burning rate catalysts exhibit high migration and volatility during curing process and prolonged storage of the composite solid propellants. To deal with the drawbacks twenty‐one dinuclear (ferrocenylmethyl)imidazolium compounds paired with polycyano anions, were synthesized and characterized by 1H NMR, 13C NMR, UV/Vis, elementary analysis, and both 2 and 11 were further characterized by single‐crystal X‐ray diffraction. The migration test revealed that the compounds have excellent anti‐migration ability. The cyclic‐voltammetry results suggested that they are quasi‐reversible or irreversible redox systems. The TG/DSC analyses showed that the compounds are highly thermal stable. Their effects on the thermal decomposition of ammonium perchlorate (AP) and 1,3,5‐trinitro‐1,3,5‐triazacyclohexane (RDX) were additionally examined. The results showed that the new compounds have strong effects on the thermal decomposition of both AP and RDX during combustion. Both 13 and 21 are more excellent than catocene for increasing the released heats of AP and can be used as alternatives of catocene in the composite solid propellants.  相似文献   

8.
双核茂铁四氮唑的合成及对高氯酸铵热分解的催化作用   总被引:2,自引:0,他引:2  
首先以二茂铁为原料合成丙基桥联的双聚二茂铁(DFP), 经甲酰化得到丙基桥联的双聚二茂铁甲醛(DFP-CHO, 1), 再与NH2OH·5HCl进行缩合反应得到双核二茂铁肟(2), 然后脱水得到丙基桥联双聚二茂铁甲腈(3), 最后在(n-C4H9)3SnCl 的催化作用下与NaN3进行[2+3]环加成反应, 生成目标产物丙基桥联双聚二茂铁四唑(4); 通过1H NMR, FTIR和ESI-MS对目标产物的结构进行了表征. 利用差示扫描量热分析(DSC)和热重(TG)分析研究了这2个双聚二茂铁氮杂衍生物的燃速催化性能, 结果表明, 通过添加质量分数为5%的丙基桥联双聚二茂铁氮杂化合物3和4均使高氯酸铵(AP)的热分解温度降至100℃左右.  相似文献   

9.
Ammonium perchlorate (AP) is a common oxidizer in composite solid rocket propellants due to its excellent burning characteristics, good processability, and storability. Owing to their outstanding catalytic effects, ferrocene, and its derivatives have become the most widely used burning rate catalysts (BRCs). The addition of ferrocene and its derivatives to AP rendered performance optimization. In this study, azole-based ferrocenyl compounds were successfully synthesized. The compounds were characterized by single-crystal X-ray diffraction, UV-vis spectroscopy, and other techniques. The thermal degradation of AP catalyzed by these compounds was evaluated by differential scanning calorimetry and thermogravimetric analysis. Results revealed that the decomposition peak temperature of AP dramatically decreases and that the released heat of AP significantly increases with the new compounds as additives. Hence, the six azole-based ferrocenyl BR catalysts are favorable for the combustion catalytic activity.  相似文献   

10.
The effects of various burning rate catalysts on thermal decomposition of cured glycidyl azide polymer (GAP)-ammonium perchlorate (AP) propellants have been studied by means of thermal analysis and a modified vacuum stability test (MVST). Four types of iron-containing catalysts examined in this paper are catocene, ferrocenecarboxaldehyde (FCA), ferrocene, and ferric oxide. Results of differential thermal analysis (DTA) and thermogravimetric analysis (TG) revealed that the catalysts play an important role in the decomposition of both AP and GAP. The peak decomposition temperature (T m) of DTA curves and onset decomposition temperature (T o) of TG patterns considerably shifted to a lower temperature as the concentration of catalysts increased in the propellants. The endothermic temperature of AP, however, is unaffected by the presence of burning rate catalysts in all cases. The activation energy of decomposition of the propellants in range of 80 to 120°C is determined, based on the MVST results.  相似文献   

11.
Neutral ferrocene‐based burning rate (BR) catalysts show strong migration trends and volatility during long‐time storage and curing of the composite solid propellants. To reduce these disadvantages thirty‐two ferrocenyl quaternary ammonium compounds, paired with polycyano anions, were synthesized and characterized by 1H NMR, 13C NMR, and UV/Vis spectroscopy, as well as elemental analysis. Additionally, crystal structures of eight compounds were confirmed by single‐crystal X‐ray diffraction. TG and DSC analyses indicated that the compounds containing 1,1,2,3,3‐pentacyanopropenide anions show high thermal stability. Cyclic voltammetry studies suggested that they are quasi‐reversible or irreversible redox systems. Anti‐migration tests verified that the tested compounds show very low migration tendency and some of them exhibit no migration after 30 days aging at 70 °C. Their catalytic efficiency in the thermal decomposition of ammonium perchlorate (AP), 1,3,5‐trinitro‐1,3,5‐triazacyclohexane (RDX), and 1,2,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane (HMX) were examined by DSC analyses. The results revealed that most of the compounds exhibit distinct effects on the thermal degradation of AP and RDX. Two compounds have good catalytic ability in the thermal decomposition of HMX, representing rare examples of the reported ferrocenyl ionic compounds, which display catalytic property during combustion of HMX.  相似文献   

12.
To meet the requirement of generating more apparent specific heat release at lower temperatures for ammonium perchlorate (AP)-based composite solid propellants, the development of high-performance catalysts for improving the thermal decomposition properties of AP still remains essential and challenging. Herein, a novel catalyst, multichanneled hierarchical porous nanocomposite of CuO and carbonized butterfly wing (CuO/CBW), has been prepared through an in-situ reaction on original butterfly wing scales. Owing to the high active surface area and the good electrical and thermal conductivity, as well as the synergistic effect of CuO nanoparticles (20–25 nm) and CBW, CuO/CBW nanocomposite exhibits excellent catalytic activity for AP thermal decomposition in reducing the high-temperature decomposition temperature by 88.3°C, lowering the apparent activation energy from 190.0 to 103.1 kJ mol−1 and increasing the heat release from 255 to 1841 J g−1.  相似文献   

13.
Ag/polyamidoamine (PAMAM) nanocomposites were produced by photoreduction of relevant metallic salts in different generations of PAMAM (PAMAMs) methanol solutions under room temperature and ambient pressure. The obtained Ag nanoparticles were quite uniform in size with a diameter of about 15 nm. Thermogravimetric analysis (TGA) results showed that the amount of Ag nanoparticles could well affect the thermal stability of PAMAMs. As the mass ratio of Ag nanoparticles to PAMAMs increased, the weight-losing ratios decreased. Meanwhile, TGA curves also indicated that the thermal behavior of Ag/PAMAMs was greatly different in the two stages of low (130~280 °C) and high temperature (280~450 °C) range; the loading of Ag nanoparticles mainly influences the thermal stability of PAMAMs in high temperature region (280~450 °C). Moreover, the multistage decomposition profile of derivative thermal gravimetry curves suggested that there might contain some intermediate Ag/PAMAMs type of composites.  相似文献   

14.
Graphene shells with a controllable number of layers were directly synthesized on Cu nanoparticles (CuNPs) by chemical vapor deposition (CVD) to fabricate a graphene‐encapsulated CuNPs (G/CuNPs) hybrid system for surface‐enhanced Raman scattering (SERS). The enhanced Raman spectra of adenosine and rhodamine 6G (R6G) showed that the G/CuNPs hybrid system can strongly suppress background fluorescence and increase signal‐to‐noise ratio. In four different types of SERS systems, the G/CuNPs hybrid system exhibits more efficient SERS than a transferred graphene/CuNPs hybrid system and pure CuNPs and graphene substrates. The minimum detectable concentrations of adenosine and R6G by the G/CuNPs hybrid system can be as low as 10?8 and 10?10 M , respectively. The excellent linear relationship between Raman intensity and analyte concentration can be used for molecular detection. The graphene shell can also effectively prevent surface oxidation of Cu nanoparticles after exposure to ambient air and thus endow the hybrid system with a long lifetime. This work provides a basis for the fabrication of novel SERS substrates.  相似文献   

15.
《Solid State Sciences》2007,9(8):750-755
In this article we present the synthesis of Cu–Cr–O nanocomposites via a citric acid (CA) complexing approach and the evaluation of the as-synthesized Cu–Cr–O nanocomposites as additives for the catalytic combustion of AP (ammonium perchlorate)-based solid state propellants. Techniques of thermo-gravimetric/differential thermal analyzer (TG–DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as scanning electron microscopy (SEM) have been employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials, respectively. The results show that well-crystallized Cu–Cr–O nanocomposites can be produced by using a temperature as low as 600 °C. Phase structure of the as-obtained Cu–Cr–O nanocomposites depends on the Cu/Cr molar ratio in the starting reactants. Addition of the as-synthesized Cu–Cr–O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid state propellants considerably. Noticeably, solid state propellants containing Cu–Cr–O nanocomposites with a Cu/Cr molar ratio of 0.7 exhibits the most stable combustion at all pressures.  相似文献   

16.
In the present paper a pure phase of the copper chromite spinel nanoparticles (CuCr2O4 SNPs) were synthesized via the sol–gel route using citric acid as a complexing agent. Then, the CuCr2O4 SNPs has been characterized by field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). In the next step, with the addition of Cu–Cr–O nanoparticles (NPs), the effects of different parameters such as Cu–Cr–O particle size and the Cu/Cr molar ratios on the thermal behavior of Cu–Cr–O NPs + AP (ammonium perchlorate) mixtures were investigated. As such, the catalytic effect of the Cu–Cr–O NPs for thermal decomposition of AP was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA/DSC results showed that the samples with different morphologies exhibited different catalytic activity in different stages of thermal decomposition of AP. Also, in the presence of Cu–Cr–O nanocatalysts, all of the exothermic peaks of AP shifted to a lower temperature, indicating the thermal decomposition of AP was enhanced. Moreover, the heat released (ΔH) in the presence of Cu–Cr–O nanocatalysts was increased to 1490 J g−1.  相似文献   

17.
Magnetically recoverable copper nanoparticle‐loaded natural zeolite (CuNPs/MZN) as an efficient catalyst was synthesized. The Fe3O4 magnetic nanoparticles were immobilized into the pores of natural clinoptilolite zeolite, which were modified with epichlorohydrine and ethylenediamine species and then CuNPs were decorated on the surface of functionalized zeolite (CuNPs/MZN). The catalysts were successfully characterized by Fourier transform‐infrared, CHN, thermogravimetric analysis, inductively coupled plasma, X‐ray diffraction, scanning electron microscopy and transmission electron microscopy techniques. The 1,2,3‐triazoles were readily synthesized through using the catalyst in high yields and short reaction times under ultrasonic conditions via CuAAC reactions of aryl azides and terminal alkynes. The CuNPs/MZN was easily separated from the reaction mixture by an external magnet and reused several times successfully. The catalyst could be used for the synthesis of various organic compounds.  相似文献   

18.
PVP and G1.5 PAMAM dendrimer co-mediated silver nanoparticles of smaller than 5 nm in diameter were prepared using H2 as reducing agent. With the TEM micrograph, it was found that the molar ratios of PVP and G1.5 PAMAM dendrimer have significant effect in the morphology and size distribution of silver nanoparticles. The reaction rate (fitting a first-order equation) was strongly influenced by the molar ratios of PVP and G1.5 PAMAM dendrimer and the reaction temperature. From the UV-Vis spectra of an aqueous solution of silver nanoparticles, they could be stored for at least 2 months without coagulation at room temperature.  相似文献   

19.
The thermal decomposition of ammonium perchlorate (AP) is considered to be the first step in the combustion of AP-based composite propellants. In this report, the effect of the specific surface area of titanium oxide (TiO2) catalysts on the thermal decomposition characteristics of AP was examined with a series of thermal analysis experiments. It was clear that the thermal decomposition temperature of AP decreased when the specific surface area of TiO2 increased. It was also possible that TiO2 influences the frequency factor of AP decomposition because there was no observable effect on the activation energy.  相似文献   

20.
Morphological change of gold-dendrimer nanocomposites by laser irradiation   总被引:1,自引:0,他引:1  
Gold-dendrimer nanocomposites are prepared in aqueous solutions in the presence of poly(amidoamine)dendrimers (PAMAM) (generation 3 and 5) or poly(propyleneimine)dendrimers (PPI) (generation 3 and 4) by wet chemical NaBH(4) method. Thus prepared gold-dendrimer nanocomposites are irradiated by laser at 532 nm. UV-vis absorption spectroscopy and transmission electron microscopy reveal that the gold nanoparticles grow with the laser irradiation time as well as the fluence of the laser; in particular, the gold nanoparticles prepared at lower concentrations of PAMAM dendrimer as well as lower generations of PAMAM grow significantly. On the other hand, in the case of PPI dendrimers, the gold nanoparticles hardly grow by irradiation. In addition, dynamic light-scattering measurements show that the laser irradiation markedly promotes the association of the gold-PAMAM G3 dendrimer nanocomposites compared to that of the gold-PAMAM G5 dendrimer nanocomposites, while the sizes of association for the gold-PPI G3, G4 dendrimer nanocomposites hardly change by laser irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号