首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   896篇
  免费   27篇
  国内免费   13篇
化学   894篇
综合类   6篇
数学   2篇
物理学   34篇
  2023年   5篇
  2022年   23篇
  2021年   24篇
  2020年   33篇
  2019年   31篇
  2018年   37篇
  2017年   44篇
  2016年   34篇
  2015年   40篇
  2014年   26篇
  2013年   115篇
  2012年   61篇
  2011年   56篇
  2010年   51篇
  2009年   44篇
  2008年   36篇
  2007年   43篇
  2006年   45篇
  2005年   27篇
  2004年   25篇
  2003年   8篇
  2002年   14篇
  2001年   7篇
  2000年   9篇
  1999年   16篇
  1998年   8篇
  1997年   6篇
  1996年   6篇
  1995年   15篇
  1994年   11篇
  1993年   2篇
  1992年   6篇
  1991年   9篇
  1990年   1篇
  1989年   2篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
排序方式: 共有936条查询结果,搜索用时 109 毫秒
121.
A confirmatory method for the determination of organochlorine pesticides (OCPs) and their metabolites (endrin, α-endosulfan, β-endosulfan, endosulfan sulfate, heptachlor, heptachlor epoxide, 2,4′-DDD, 4,4′-DDD, 2,4′-DDE 4,4′-DDE, 2,4′-DDT, and 4,4′-DDT) in surface waters using liquid chromatography /APCI/tandem mass spectrometry has been developed. Chromatographic separation was carried out on a ChromSpher 5 Pesticide column using a gradient elution with mobile phase 1mM ammonium acetate-acetonitrile. Endrin, α-endosulfan, β-endosulfan , endosulfan sulfate, heptachlor and heptachlor epoxide were determined in the negative ionization mode, while the rest compounds in positive ionization mode. For the identification of the analytes, two multireaction monitoring transitions were selected per compounds except for the heptachlor which selected ion monitoring was used. The linearity of the optimized method ranges after SPE concentration, from 0.009 to 30.60 μgL−1 with correlation coefficients greater than 0.99. The method recovery values varied from 72 to 119 % for the different fortification levels . The developed method was successfully applied to determine OCPs and their metabolites in surface water samples collected near paddy fields in growing season of rice, at year 2005 in Pathumthani province, Thailand. Endosulfan sulfate was detected in five out of seven samples and three of them could be quantitated in the range of 0.31to 0.50 μgL−1.  相似文献   
122.
周鹏  洪义  张祺  黄保  朱辉  莫婷  黄正旭 《分析测试学报》2019,38(9):1079-1084
在传统低温等离子体质谱技术的基础上引入热解吸装置,建立了一种直接快速筛查蔬菜中有机磷农药的新方法。白菜样品经乙腈提取,离心取上清液进行质谱检测,在正离子检测模式下,将承载样品的载玻片置于加热块上进行解吸,被低温等离子体射流离子化后进入质谱检测。结果表明,在优化实验条件下,8种有机磷农药在0.005~0.200 mg/L质量浓度范围内线性良好,相关系数均大于0.99,检出限为0.001~0.010 mg/L,加标回收率为90.5%~119%,相对标准偏差(RSD,n=6)为12%~17%。与无热解吸条件相比,检测灵敏度提高了9.3~41.7倍。该方法操作简单,无复杂的样品前处理,灵敏度高、准确性好,可用于蔬菜中8种有机磷农药残留的同时测定,在大批量样品的非靶向分析中有较大的应用前景。  相似文献   
123.
A new sample preparation method based on SBA‐15 assisted electromembrane extraction coupled with corona discharge ion mobility spectrometer was developed for the determination of Thiabendazole as a model basic pesticide in fruit juice samples. The addition of SBA‐15 in the supported liquid membrane in electromembrane extraction system not only can lead to enhancement of the effective surface area, but also introducing the negatively charged silanol groups into supported liquid membrane might improve migration of positively charged analytes toward the supported liquid membrane and finally into the acceptor solution. To investigate the effect of the presence of SBA‐15 in the supported liquid membrane on the extraction efficiency, a comparative study was carried out between the conventional electromembrane extraction and SBA‐15/electromembrane extraction methods. Under the optimized conditions, SBA‐15/electromembrane extraction method showed higher extraction efficiencies in comparison with conventional electromembrane extraction method. SBA‐15/electromembrane extraction method exhibited a low limit of detection (0.9 ng/mL), high preconcentration factor (167) and high recovery (83%). Finally, the applicability of SBA‐15/electromembrane extraction method was studied by the extraction and determination of Thiabendazole as a model basic pesticide in fruit juice samples.  相似文献   
124.
In this work, gas chromatography tandem with electron ionization and full‐scan high‐resolution mass spectrometry with a time‐of‐flight mass analyzer was evaluated for analyzing pesticide residues in teas. The relevant aspects for mass spectrometry analysis, including the resolution and mass accuracy, acquisition rate, temperature of ion source, were investigated. Under acquisition condition in 2‐GHz extended dynamic range mode, accurate mass spectral library including 184 gas chromatography detectable pesticides was established and retrieval parameters were optimized. The mass spectra were consistent over a wide concentration range (three orders) with good match values to those of NIST (EI‐quadrupole). The methodology was verified by the validation of 184 pesticides in four tea matrices. A wide linear range (1–1000 μg/kg) was obtained for most compounds in four matrices. Limit of detection, limit of quantification, and limit of identification values acquired in this study could satisfy the requirements for maximum residue levels prescribed by the European Community. Recovery studies were performed at three concentrations (10, 50, and 100 μg/kg). Most of the analytes were recovered at an acceptable range of 70–120% with relative standard deviations ≤ 20% in four matrices. The potential extension of qualitative screening scope makes gas chromatography tandem with electron ionization and mass spectrometry with a time‐of‐flight mass analyzer a more powerful tool compared with gas chromatography with tandem mass spectrometry.  相似文献   
125.
In this study, a new two–step extraction procedure based on the combination of a modified quick, easy, cheap, effective, rugged, and safe extraction method with a deep eutectic solvent based microwave‐assisted dispersive liquid–liquid microextraction has been developed for the extraction of multiclass pesticides in tomato samples before their analysis by gas chromatography with flame ionization detection. In this method, initially, an aliquot of tomato is crushed and diluted with deionized water. The mixture is then passed through a filter paper and its residue and aqueous phase are separated. Afterwards, acetonitrile as an extraction/disperser solvent is passed through the filter paper containing the refuse. The analytes remained in the refuse are extracted into the acetonitrile and then the obtained extract is mixed with a deep eutectic solvent. The obtained mixture is injected into the tomato juice and placed in a microwave oven for 15 s. Consequently, a cloudy state is formed and the extractant containing the analytes are sedimented at the bottom of the tube after centrifugation. Finally, 1 μL of the sedimented phase is removed and injected into the separation system. Under the optimum conditions, limits of detection and quantification were in the ranges of 0.42–0.74 and 1.4–2.5 ng/g, respectively.  相似文献   
126.
Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP-based electrochemical sensing are discussed as well as the relevant applications of MIPs used in sample preparation and then coupled to electrochemical analysis. Future perspectives and challenges have been eventually given.  相似文献   
127.
Pesticides have posed significant threats to aquatic ecosystems, yet little is known about their transformation products. The challenge is to simultaneously analyze various pesticides and transformation products in water as they have distinct physicochemical properties. A mix‐mode solid phase extraction method was established to simultaneously analyze current‐use pesticides and their transformation products using a mixture of hydrophile–lipophile balance, weak anion, and cation exchange resins (2:1:1, w/w/w) in combination with high‐performance liquid chromatography and tandem mass spectrometry for chemical quantification. Neutral, acidic, and alkaline methanol were used as the elution solvent. Box‐Behnken design was applied to optimize extraction conditions. Optimal conditions were as follows: sorbent mass, 200 mg; volume of elution solvent, 5 mL × 3; pH 4. The method was validated for compounds at concentrations from 20 to 1000 ng/L in different types of water samples, with recovery being from 43.5 ± 3.1 to 141 ± 35%. Low method detection limits (0.02?5.6 ng/L) implied that the developed method was sensitive. Finally, the method was applied to monitor current‐use pesticides and their transformation products in natural waters. Frequent detection of transformation products of pesticides indicated that their contribution to aquatic risk should not be ignored.  相似文献   
128.
A method to determine 8 polychlorinated biphenyls (PCBs), 23 organochlorine pesticides (OCPs) and 16 polycyclic aromatic hydrocarbons (PAHs) was described using dispersive liquid–liquid microextraction (DLLME) of a small amount of plasma or serum sample and gas chromatography–tandem mass spectrometry (GC–MS/MS). The appropriate selection of the extraction solvent and dispersing solvent contributes to a high extraction yield and a clean extract. To verify the developed method, the interference, linearity of the calibration curve, detection limit, precision and accuracy were evaluated. The calibration curves were linear by 2–3 orders of magnitude with correlation coefficients above 0.997 in all cases. The LODs of PCBs, OCPs and PAHs were measured in the ranges of 0.0006–0.0029, 0.001–0.029 and 0.0002–0.012 ng/mL. The intraday precision achieved by this method was 2.19–10.3% (PCBs), 1.65–14.3% (OCPs) and 0.91–12.8% (PAHs), and the intraday accuracy 1.56–7.37% (PCBs), 2.34–19.6% (OCPs) and 1.49–15.7% (PAHs). The advantage of this method is that the analysis of PCBs, OCPs, and PAHs can be performed in a single chromatographic run, and the low detection limit enables monitoring of target substances in low exposure general public samples, and the analysis procedure is relatively simple and fast.  相似文献   
129.
基于盐析辅助液液萃取(LLE)交联聚维酮(PVPP)净化技术,建立了蜂蜜中7种新烟碱类农药的靶向单一离子监测(TSIM)/高分辨质谱检测方法。样品用乙腈基于盐析辅助LLE-PVPP提取净化,采用BEH C18色谱柱为分析柱,甲醇-水体系(两相均含0.1%甲酸和5 mmol/L甲酸铵)作为流动相,梯度洗脱,采用高分辨质谱TSIM模式检测目标化合物,内标法定量。结果表明,盐析辅助LLE-PVPP净化技术可实现提取净化一步式样品制备,TSIM扫描模式则显示了更宽的线性动态范围和更高的灵敏度与准确度。7种新烟碱类农药在0.01~100μg/L或0.02~100μg/L范围内具有良好的线性关系(r20.999);方法检出限为0.03~0.07μg/kg,定量下限为0.1~0.2μg/kg。在0.2、2、20μg/kg 3种加标水平下,7种新烟碱类农药在蜂蜜中的平均回收率为84.8%~112.7%,日内精密度(RSDr)为0.9%~5.7%,日间精密度(RSDR)为3.7%~9.7%。该方法前处理简单快速、成本较低,灵敏度高、重现性好,可广泛应用于蜂蜜中新烟碱类农药残留的快速检测。  相似文献   
130.
The current study assessed the spatiotemporal variations and human health surveillance associated with organochlorine pesticide (OCP) contamination in water, sediments, and fish from Chenab River, Pakistan. The OCP determinations were performed using high-performance liquid chromatography with a reverse-phase C18 column. The total OCP levels ranged from 13.33 to 274.59?ng/L in water, 4.63 to 239.11?ng/g in sediments, and 23.79 to 387.12?ng/g in fish species. The overall pattern of mean OCP concentrations followed the order as ΣDDTs?>?Σendosulfan?>?aldrin and OCP pollution pattern among the headworks were Khanki Barrage?>?Qadirabad Barrage?>?Trimmu Barrage?>?Marala Barrage in all three environmental matrixes during both seasons. The estimated daily intake (EDI) for ∑OCPs was found to be 22.44?ng/kg/day. The hazard ratios calculated to assess the carcinogenic risk indicated that the values for ∑DDT and aldrin at the 95th percentile concentrations were greater than one, indicating the probability of carcinogenic risk occurrence of one in million populations due to fish consumption. Therefore, these high levels of OCPs and carcinogenic risk through fish consumption highlight the needs of immediate elimination of OCPs from riverine environment of Chenab River and we recommend long-term monitoring-based freshwater ecological studies to be conducted in the study area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号