首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1507篇
  免费   215篇
  国内免费   281篇
化学   1485篇
晶体学   32篇
力学   5篇
综合类   22篇
数学   1篇
物理学   458篇
  2024年   3篇
  2023年   24篇
  2022年   49篇
  2021年   60篇
  2020年   74篇
  2019年   70篇
  2018年   68篇
  2017年   62篇
  2016年   67篇
  2015年   62篇
  2014年   83篇
  2013年   133篇
  2012年   111篇
  2011年   103篇
  2010年   68篇
  2009年   70篇
  2008年   77篇
  2007年   92篇
  2006年   56篇
  2005年   55篇
  2004年   51篇
  2003年   59篇
  2002年   54篇
  2001年   57篇
  2000年   55篇
  1999年   52篇
  1998年   37篇
  1997年   37篇
  1996年   26篇
  1995年   34篇
  1994年   33篇
  1993年   23篇
  1992年   21篇
  1991年   17篇
  1990年   11篇
  1989年   12篇
  1988年   10篇
  1987年   11篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1976年   1篇
排序方式: 共有2003条查询结果,搜索用时 218 毫秒
91.
通过罗丹明B与乙二胺反应生成的中间体合成了一例可以对铜离子进行比色检测的探针R-Cu.R-Cu可以实现对在HEPES(5 mmol/L;pH 7.4)溶液中Cu2+的比色可视化识别,加入Cu2+后,R-Cu的吸收明显增强,呈现出罗丹明B的紫红色.探针对Cu2+具有较高的选择性和灵敏性,对其他常见的金属离子具有较强的抗干扰能力.该探针可以在较宽的特别是近中性pH环境下有效检测Cu2+,最低检出限为2.70×10?7 mol/L.  相似文献   
92.
Textile and dye industries are main sources of dye bearing effluent. In present studies the anaerobic biological degradation of Acid Red 3BN dye water (AR3BNDW) and mixed dye water (MDW) for reduction of color and COD were studied in sequential batch reactor (SBR). The sludge as sources of microorganism was arranged from maize processing bio methanation wastewater treatment plant, which was acclimatized for treatment of AR3BNDW and MDW. After the acclimatization, dyes degradation were studied in SBR At optimum operation condition of hydraulics retention time (HRT) = 2.5 d, and treatment time (tR) = 16 h, AR3BNDW have gone maximum 87% color reduction of 500 mg/L dye, and 82.8% COD reduction of 380 mg/L COD. At same operating condition, 84.5% color reduction of 500 mg/L dye, and 79.42% COD reduction of 413 mg/L COD achieved for MDW. The second order Grau model was fitted well for COD and dye reductions. The kinetics parameter were evaluated for both the dye water.  相似文献   
93.
94.
Designing and evaluating novel dye concepts is crucial for the development of the field of dye-sensitized solar cells (DSSCs). In our recent report, the novel concept of tethering the anti-aggregation additive chenodeoxycholic acid (CDCA) to dyes for DSSC was introduced. Based on the performance improvements seen for this modification, the aim of this study is to see if a simplified anti-aggregation unit could achieve similar results. The following study reports the synthesis and photovoltaic characterization of two novel dyes decorated with the steric ethyladamantyl moiety on the π-spacer, and on the triarylamine donor. This modification is demonstrated to be successful in increasing the photovoltages in devices employing copper-based electrolytes compared to the non-modified reference dye. The best photovoltaic performance is achieved by a device prepared with the adamantyl decorated donor dye and CDCA, this device achieves a power conversion efficiency of 6.1 % (Short-circuit current=8.3 mA cm−2, Open-circuit voltage=1054 mV, Fill factor=0.69). The improved photovoltaic performance seen for the adamantyl decorated donor demonstrate the potential of ethyladamantyl side chains as a tool to ensure surface protection of TiO2.  相似文献   
95.
It is highly desired yet challenged to find an adsorbent with low cost and excellent performance in the removal of organic dyes from aqueous solution. Here we reported that a layered cationic aluminum oxyhydroxide material hydrothermally synthesized from the low-cost source materials of AlCl3∙6H2O, CaO and H2O, known as JU-111, can meet such criterion in removing methyl orange(MO) and Congo red(CR). JU-111 shows fast adsorption kinetics[especially for CR(15 s)] and high adsorption capacity(MO:>1000 mg/g; CR:>2900 mg/g), surpassing most of the reported adsorbents. Comprehensive characterizations of the adsorption process of MO and CR revealed that both adsorptions were achieved via the anion exchange process. The characteristics of extremely low cost and excellent performance render JU-111 great potential in the practical applications in the removal of anionic dyes.  相似文献   
96.
In this paper, a novel Zn(II) and Co(II) Schiff base complexes were synthesized by template method via refluxing 2,3-Naphthalenedicarboxaldehyde, Metal(II) chloride (Metal = Zn or Co), and L-phenylalanine. ZnO and Co3O4 nanoparticles were synthesized by thermal decomposition of Zn(II) and Co(II) complexes, respectively. The products were characterized using different instruments such as CHN, Conductivity, FT-IR, XRD, HR-TEM, and UV–Vis spectrophotometer. The experimental results of elemental analysis for Zn(II) and Co(II) complexes, agree with the calculated results, indicating that the Zn(II) and Co(II) complexes have 1:1 ligand/metal ratios. The molar conductance of the Zn(II) and Co(II) complexes, is less than 5 Ω?1cm?1mol?1, confirming the non-electrolytic nature of the synthesized complexes. The average crystallite diameter of the ZnO and Co3O4 samples is 39.64 and 30.38 nm, respectively. The optical energy gap of the ZnO and Co3O4 samples are 2.75 and 3.25 eV, respectively. Methylene blue dye was utilized to examine the photocatalytic properties of the synthesized nanoparticles using UV irradiations in the absence and presence of hydrogen peroxide. The % degradation of the methylene blue dye in the presence of hydrogen peroxide using ZnO and Co3O4 samples after 40 min is 94.55 and 98.98, respectively. Six pathogenic microbes were utilized to examine the antimicrobial properties of the synthesized Schiff base complexes and their nanoparticles: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Streptococcus species, Aspergillus species, and Candida species. Zn(II) and Co(II) complexes display inhibition towards all the studied microbes. Besides, ZnO and Co3O4 nanoparticles exhibit less inhibition towards Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Streptococcus species. Moreover, ZnO and Co3O4 nanoparticles have no activity towards Aspergillus and Candida species.  相似文献   
97.
In this paper, our research team has synthesized new nanocomposites by simple precipitation/ignition method and using low-cost chemicals. Hence, β-cobalt hydroxide/hydrohausmannite/ramsdellitee/spertiniite and tenorite/cobalt manganese oxide/manganese oxide new nanocomposites were synthesized by precipitation of Mn(II)/Co(II)/Cu(II) solution using sodium hydroxide and ignition of precipitate at 700 °C for 3 hrs, respectively. The synthesized nanocomposites were characterized using different instruments such as energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), nitrogen gas sorption analyzer, and UV–vis spectrophotometer. Energy dispersive X-ray analysis revealed that the nanocomposite formed as a result of precipitation consists of copper, cobalt, manganese, and oxygen where the weight percentages are equal to 31.73, 27.01, 17.26, and 24 %, respectively. Also, the nanocomposite formed as a result of ignition consists of copper, cobalt, manganese, and oxygen where the weight percentages are equal to 31.26, 23.87, 14.56, and 30.31 %, respectively. Transmission electron microscope revealed that the nanocomposites formed as a result of precipitation and ignition consist of polyhedral and spherical shapes with an average diameter of 34.50 and 28.56 nm, respectively. The synthesized nanocomposites were used as new photocatalysts for the efficient degradation of methylene blue dye. 0.05 g of the synthesized nanocomposites degrade 100 % of 50 mL of 15 mg/L of methylene blue dye solution within 25 min in the presence of H2O2 under UV light.  相似文献   
98.
In this paper, we used green and hydrothermal methodology to prepare zinc oxide (ZnO) nanoflakes (NFs) with jute stick extract (J–ZnO NFs) as growth substrate. The prepared materials were characterized using different analytical techniques including ultraviolet–visible spectroscopy (UV–vis), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The characteristic absorption peak for ZnO NFs and J–ZnO NFs were observed from the UV–vis spectrum at 373 and 368 nm respectively. The hexagonal wurtzite crystal structure of ZnO NFs and J–ZnO NFs was confirmed by XRD analysis. FESEM and TEM analyses of synthesized J–ZnO NFs confirmed their NFs shape and collectively flower-like structure formation by the assembly of NFs of J–ZnO on cellulose of jute stick extract substrate. The FTIR analysis revealed the functional groups of jute stick extract biomolecules, mainly cellulose, are responsible for the formation of collectivel flower like J–ZnO NFs structure. The XPS analysis revealed the surface and chemical compositions (Zn, C, and O) of J–ZnO NFs. The photocatalytic performance of ZnO NFs and J–ZnO NFs samples was carried out by the degradation of methylene blue (MB) dye solution under UV light irradiation. The degradation efficiency of ZnO NFs and J–ZnO NFs was obtained 79 % and 89 %, respectively, for 5 h. Notably, the degradation efficiency of the J–ZnO NFs was 98 % after 8 h of irradiation, which is very inspiring. The both NFs exhibited first-order kinetics with MB photodegradation. We also examined the possible antibacterial activity of both samples against Escherichia coli (E. coli) pathogens, which demonstrated a significant result with a 17 mm and 19 mm zone of inhibition by ZnO NFs and J–ZnO NFs respectively.  相似文献   
99.
A composite adsorbent, chitosan//poly (ε-caprolactone)-block poly (ethylene glycol)/SiO2 aerogel@polydopamine (CS/PCL-b-PEG/SA@PDA) membrane was prepared for the adsorption of organic dyes. The matrix polymer materials of this novel adsorbent were eco-friendly. SiO2 aerogel with nanoporous network construction was fixed in the multicomponent polymer fibers through simultaneous electrospinning-electrospray technology followed by modification of polydopamine (PDA). The composite adsorbent had a maximum adsorption capacity of 598.8 mg/g for Congo red (CR) and possessed good reusability performance. This adsorbent showed excellent performance for the selective adsorption of relatively large molecule CR dyes even under high concentration of small molecule methyl orange (MO) dyes or 1 M of salt solution. The adsorption mechanism indicated that the –NH2 and –OH groups in adsorbent could generate the stronger electrostatic attraction with the –SO3- groups in CR. Meanwhile, the sufficient adsorption spaces of the adsorbent were constructed by the porous network structure of SiO2 aerogel, the accumulation of PDA particles and the porous structure of the multicomponent composite membrane. The work provided a proactive study in designing an adsorbent for the selective adsorption of organic dyes.  相似文献   
100.
A chalcone series (3a–f) with electron push–pull effect was synthesized via a one-pot Claisen–Schmidt reaction with a simple purification step. The compounds exhibited strong emission, peaking around 512–567 nm with mega-stokes shift (∆λ = 93–139 nm) in polar solvents (DMSO, MeOH, and PBS) and showed good photo-stability. Therefore, 3a–f were applied in cellular imaging. After 3 h of incubation, green fluorescence was clearly brighter in cancer cells (HepG2) compared to normal cells (HEK-293), suggesting preferential accumulation in cancer cells. Moreover, all compounds exhibited higher cytotoxicity within 24 h toward cancer cells (IC50 values ranging from 45 to 100 μM) than normal cells (IC50 value >100 μM). Furthermore, the antimicrobial properties of chalcones 3a–f were investigated. Interestingly, 3a–f exhibited antibacterial activities against Escherichia coli and Staphylococcus aureus, with minimum bactericidal concentrations (MBC) of 0.10–0.60 mg/mL (375–1000 µM), suggesting their potential antibacterial activity against both Gram-negative and Gram-positive bacteria. Thus, this series of chalcone-derived fluorescent dyes with facile synthesis shows great potential for the development of antibiotics and cancer cell staining agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号