首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   76篇
  国内免费   179篇
化学   353篇
晶体学   12篇
力学   148篇
综合类   23篇
数学   120篇
物理学   201篇
  2024年   6篇
  2023年   21篇
  2022年   19篇
  2021年   19篇
  2020年   24篇
  2019年   31篇
  2018年   28篇
  2017年   23篇
  2016年   18篇
  2015年   13篇
  2014年   33篇
  2013年   35篇
  2012年   42篇
  2011年   39篇
  2010年   42篇
  2009年   48篇
  2008年   35篇
  2007年   30篇
  2006年   38篇
  2005年   21篇
  2004年   38篇
  2003年   19篇
  2002年   19篇
  2001年   14篇
  2000年   9篇
  1999年   11篇
  1998年   15篇
  1997年   17篇
  1996年   14篇
  1995年   26篇
  1994年   10篇
  1993年   13篇
  1992年   9篇
  1991年   5篇
  1990年   6篇
  1989年   14篇
  1988年   7篇
  1987年   7篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1981年   6篇
  1979年   3篇
  1976年   2篇
  1975年   1篇
  1959年   2篇
  1958年   5篇
  1957年   1篇
  1955年   1篇
排序方式: 共有857条查询结果,搜索用时 46 毫秒
101.
研究了苯对Pt/Ga2O3/WO3/ZrO2(PtGWZ)和Pd/Al2O3/WO3/ZrO2(PdAWZ)催化剂上正己烷异构化反应的影响.结果表明,苯可影响PtGWZ和PdAWZ上正己烷异构化反应性能,苯含量越高影响越显著.与PdAWZ相比较,苯对PtGWZ上正己烷异构化反应的影响相对较小;苯对PtGWZ上正己烷异构化反应活性的影响是可逆的,撤除苯后PtGWZ对正己烷异构化的催化性能可完全恢复;苯对PtGWZ上正己烷异构化反应的稳定性没有影响.苯对PdAWZ上正己烷异构化反应活性的影响足不可逆的,PdAWZ用于含苯正己烷异构化反应催化剂会逐渐失活.热失重法积炭分析结果表明,相同条件下,含苯正己烷异构化反应后,PtGWZ上的积炭量较PdAWZ上的积炭量少.分析讨论了苯对PtGWZ和PdAWZ上正己烷异构化反应影响差异性的原因.  相似文献   
102.
随着质子交换膜燃料电池商业化的推进,为提高膜电极制造的可重现性,保障膜电极制造工艺的产品控制,需要Pt载量和分布无损高精度在线检测提供技术支撑。根据欧姆定律与焦耳定律,利用质子交换膜燃料电池膜电极在直流激励电压下产生的电流密度和热分布信号可以对膜电极电阻进行分析,通过膜电极Pt载量与其电阻的关系就可以实现膜电极Pt载量和空间分布分析。通过不同直流激励电压下电流测试,证明了膜电极电阻与Pt载量反相关,Pt载量定量表征精度为0.0008~0.0025 mg/cm2;利用红外热成像法对直流激励电压下膜电极热分布信息的采集成功实现了Pt载量分布的定性分析;最后,通过直流激励前后膜电极性能的对比证明了该方法对膜电极性能是无损的。高精度无损的直流激励测试方法可以实现膜电极Pt载量的高效在线测试,提高膜电极质量和制造效率,降低膜电极制造成本,对于质子交换膜燃料电池大规模商用具有重要意义。  相似文献   
103.
建立了KNO3-NH4SCN-水体系萃取浮选铜间接测定甲巯咪唑的新方法.研究表明:在SCN-存在下,控制溶液pH 4.0~6.0,Cu(Ⅱ)可被甲巯咪唑分子中的巯基还原生成的Cu(I)与SCN-形成CuSCN白色乳状沉淀,加入KNO3可使该沉淀浮选至水相表面,通过测定溶液中剩余Cu(Ⅱ)的量,从而间接测定甲巯咪唑的含量.CuSCN的浮选率(E%)与甲巯咪唑的质量浓度呈良好的线性关系.当Cu(Ⅱ)加入量为50 μg时,测得线性范围为0.25~3.00 μg/mL(相关系数为0.9996).检出限为0.097 μg/mL.该法可用于片剂、血清、尿样中甲巯咪唑的测定.  相似文献   
104.
用水热法合成了一系列不同含量钴掺杂的磷酸铝分子筛CoAPO-5. 合成的样品用X射线衍射(XRD), 扫描电镜(SEM), 紫外可见漫反射光谱(UV-Vis DRS), 热重分析(TG)仪和电感耦合等离子体发射光谱(ICP-AES)等进行了表征. XRD表征显示, 合成的CoAPO-5分子筛具有较高的结晶度, 分子筛晶胞参数与Co含量之间存在较好的对应关系. UV-Vis漫反射光谱显示合成的CoAPO-5分子筛具有骨架钴的特征三重峰; 焙烧后峰的强度降低, 表明分子筛骨架中Co2+可被氧化成Co3+. SEM表明该分子筛具有典型的AlPO4-5分子筛形貌特征. TG结果也表明Co2+进入了分子筛骨架, 分子筛具有较好的稳定性. 在环己烷氧化反应中CoAPO-5具有较好的催化性能, 环己烷转化率与环己酮选择性均较高; 随着分子筛中钴含量的增加, 环己烷的转化率增加.  相似文献   
105.
采用在线热裂解气相色谱-质谱法(Py-GC-MS)法研究了桔梗浸膏热裂解性质.在氦气氛围中,将桔梗浸膏分别在不同温度下进行热裂解,并以气相色谱-质谱法(GC-MS)对其裂解产物进行定性和半定量分析,并用桔梗浸膏进行了卷烟加香试验.结果表明:桔梗浸膏在300,450,600,750,900℃裂解温度下检测到的挥发性热裂解产物分别达20种、33种、48种、46种和46种;桔梗浸膏具有改善和修饰卷烟吸味、丰满烟气、减轻刺激性的作用.桔梗浸膏添加到卷烟中能明显的提高卷烟抽吸品质.  相似文献   
106.
在光诱导条件下,利用纳米二氧化钛(P25)对荧光物质核壳型CdSe/ZnS量子点进行光催化降解实验,通过荧光光谱法与传统分光光度法对比研究,测定降解液的吸光度来进行分析与评价降解率,从而判断降解程度和效率.光催化降解结果表明:对荧光物质CdSe/ZnS量子点的荧光淬灭程度(F/F0)与反应时间(t)呈线性关系,符合CdSe/ZnS量子点光催化降解动力学拟合方程,证明了荧光光谱法与传统吸光光度检测结果的一致性.建立了一种高效灵敏检测光催化降解荧光物质方法,有助于分析荧光物质的光催化降解机理,为光催化降解其它荧光物质的相关研究提供参考.  相似文献   
107.
建立了固相萃取/超高效液相色谱-串联质谱(UPLC-MS/MS)同时测定水果中6-苄基腺嘌呤(6-BA)、噻苯隆、氯吡脲、多效唑和烯效唑5种植物生长调节剂残留量的分析方法。水果样品经乙腈提取,NH2固相萃取小柱进行富集、净化,以二氯甲烷-甲醇(92∶8)为洗脱溶液,浓缩定容后,用Waters ACQUITY UPLC BEH C18(50 mm×2.1 mm,1.7μm)色谱柱分离,流速0.3 m L/min,以水-甲醇为流动相梯度洗脱,于UPLC-MS/MS仪多反应监测(MRM)模式测定,基质匹配标准溶液外标法定量。结果表明,5种植物生长调节剂在5~500 ng/m L浓度范围内呈良好的线性关系,相关系数(r2)为0.996 1~0.999 6。在0.004,0.02,0.1 mg/kg加标水平下,方法的回收率为75.6%~110.5%,相对标准偏差(RSD)为1.2%~12.8%,方法检出限(LOD,S/N≥3)为0.001~0.002 mg/kg,定量下限(LOQ,S/N≥10)为0.003~0.006 mg/kg。该方法操作简便、灵敏度高、准确可靠,适用于水果中5种植物生长调节剂残留量的同时测定。  相似文献   
108.
陶在红  秦媛媛  孙斌  孙小菡 《物理学报》2016,65(13):130301-130301
量子信息在光纤中传输时,会受到光纤损耗、色散、非线性效应等多因素的影响,将产生传输态的演化与能量转移.本文以单模光纤传输方程以及电磁场量子化理论为基础,对单模光纤中基模模场进行量子化处理,推导并建立了考虑损耗、色散、非线性效应后的单光子传输方程.基于微扰法对单光子非线性传输方程进行了求解,给出了稳定解存在的必要条件及其所满足的色散方程.深入讨论了广域光功率随微扰频率的变化关系,并且分析了光纤色散、非线性效应对解的影响.为量子光纤传输系统性能的深入研究奠定了理论基础.  相似文献   
109.
In this paper,four aspects of particular characteristics of Applied Mathematicsdifferent from those of Pure Mathematics are summarized by comparison.  相似文献   
110.
秦庆华 《力学进展》1998,28(1):71-82
系统概述了Hybrid Trefftz有限元法及其在弹性力学中的应用.该单元模型由于在插值函数上的灵活选择性使其比普通有限元能更有效地处理局部效应问题,如孔洞,集中荷载等.通过适当选择单元插值函数可构造出高精度的p-扩展元和一系列满足特殊条件的新单元,以在同等条件下提高计算精度   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号