首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
质子交换膜燃料电池的核心部件--膜电极经历了两代传统制备方法后,已经进入第三代有序化膜电极发展阶段.有序化膜电极包括质子导体有序化膜电极和电子导体有序化膜电极两大类,而电子导体有序化膜电极包括催化剂材料有序化膜电极和催化剂载体材料有序化膜电极.有序化膜电极具有良好的电子、质子、水和气体等多相物质传输通道,从而可以大大降低膜电极中Pt载量、提升燃料电池的发电性能和延长燃料电池寿命.本文整理了近几年有关有序化膜电极的研究报道,梳理了有序化膜电极研究进展,归纳比较了各种有序化膜电极制备方法的优缺点,对未来高性能、低成本和长寿命的膜电极制备技术开发具有指导意义.  相似文献   

2.
具有自增湿能力的低温质子交换膜燃料电池膜电极是实现自增湿燃料电池的重要途径,对于燃料电池的商业化具有十分重要的意义,它不仅可以大幅度减小燃料电池系统的体积,提升燃料电池系统的输出功率密度,还可以有效降低燃料电池的制造成本. 目前,低温质子交换膜燃料电池自增湿膜电极的研究主要是集中在构建具有自增湿能力的质子交换膜、自增湿催化层和复合自增湿层三个方面. 本文主要从这三个方面系统介绍近年来国内外低温质子交换膜燃料电池自增湿膜电极方面的研究进展和发展趋势.  相似文献   

3.
李赏  周芬  陈磊  潘牧 《电化学》2016,22(2):129
质子交换膜燃料电池的商业化应用迫切要求降低其Pt载量. 本文通过Pt/C氧还原电极的动力学模型计算,研究了Pt/C电极中的氧分布、生成电流以及满足实际应用的最小Pt载量. 结果表明:燃料电池Pt/C电极,阴极产生严重浓差极化的催化层厚度为40mm;功率密度达到1.4 W•cm-2(2.1 A•cm-2@0.67 V)的电池性能需要3mm左右的Pt/C阴极催化层,阴极Pt载量为0.122 mg•cm-2,即可使膜电极的阴极铂用量低于0.087 g•kW-1.  相似文献   

4.
质子交换膜燃料电池梯度化膜电极   总被引:1,自引:1,他引:0  
为实现质子交换膜燃料电池的高性能(高功率密度或大电流密度)、低成本(低铂载量)、长寿命发电,人们尝试在燃料电池的核心部件膜电极结构中引入梯度化设计的概念。梯度化膜电极包括膜电极中各组件的梯度化:气体扩散层的PTFE含量与孔隙率的梯度化,催化层的催化剂与Nafion用量的梯度化以及微孔层的疏水性与孔隙率的梯度化。梯度化膜电极中催化剂分布、孔隙率分布、亲/疏水性分布合理,具有良好的三相反应界面以及质子、电子、反应气体、水等多相物质高效传输通道,从而能满足在低铂载量、低加湿以及高电流密度条件下高性能稳定工作。本文整理了近几年来有关燃料电池梯度化膜电极研究的相关文献,梳理了梯度化膜电极研究发展脉络,归纳总结了各种梯度化膜电极的制备方法、性能以及构效关系,并展望了梯度化膜电极下一步研究方向,对高性能、低成本、长寿命的燃料电池开发具有指导意义。  相似文献   

5.
高性能质子交换膜燃料电池   总被引:5,自引:0,他引:5  
于景荣 《电化学》1999,5(4):448-454
用全氟碘酸质子交换膜作为质子交换膜燃料电池(PEMFC)电解质,简化了水和电解质的管理。本文研究了该燃料电池质子交换膜厚度对电池性能影响;性能最佳的Nafion112膜和低铂载量E-TEK电极组装的PEMFC,在输出功率高达0.95W/cm^2;同时考察了电池的能量转换效率、E-TEK电极中铂电催化剂利用率和电池的稳定性。  相似文献   

6.
崔智  王超  沈水云  蒋峰景  章俊良 《电化学》2015,21(3):273-278
氢氧燃料电池的性能与质子交换膜的性能密切相关. 在燃料电池运行过程中,反应生成的水和加湿气体所含水的扩散渗透与膜内质子拖拽共同作用实现膜中水的平衡,影响膜的欧姆电阻,进而影响电池性能. 本文通过掺杂Pt/C对质子膜进行改性,并测试了改性膜的交流阻抗、吸水特性等物理性质和单电池性能及高频阻抗,说明由膜中的Pt/C催化剂原位催化渗透到膜中的氢气和氧气反应生成水,改善了电池低湿度运行时膜的含水率,从而降低膜电阻,提升电池性能.  相似文献   

7.
膜电极是质子交换膜燃料电池最为重要的核心部件,其性能直接决定着燃料电池的性能。提高膜电极的性能和功率密度,对于推动燃料电池的商业化进程具有十分重要的意义。通常意义上的膜电极包括质子交换膜、阴极催化层、阳极催化层、阴极气体扩散层和阳极气体扩散层等5个基本单元(常常称之为五合一膜电极),气体扩散层又包括气体扩散材料层和微孔整平层;膜电极的性能取决于材料和制备技术两个方面,制备技术、膜电极的关键组成材料、铂载量都对膜电极的性能和功率密度具有重要影响。近年来,随着催化剂和质子交换膜等关键材料性能的提升,以及制备技术的进步,国内外膜电极的性能得到了大幅度的提升,丰田公司燃料电池的体积功率密度可高达3.2 kW/L。本文将主要从膜电极制备技术的角度(涉及催化剂层和气体扩散层的制备技术等)介绍近年来高性能高功率密度膜电极的研究发展情况,同时介绍国内外在降低膜电极铂载量和开发自增湿膜电极方面的研究进展。  相似文献   

8.
质子交换膜燃料电池用碳纳米管载铂催化剂的研究   总被引:4,自引:1,他引:3  
采用原位化学还原法制备碳纳米管载铂(Pt/CNTs)和碳粉载铂(Pt/C)催化剂,经透射电镜分析和X射线衍射分析,然后制成电极,组装成质子交换膜燃料电池并进行性能测试。实验结果表明,所制备的两种催化剂,铂粒径均较小(4nm左右),而Pt/CNTs表现出比Pt/C优越的催化性能。  相似文献   

9.
采用一步沉淀法,制备了纳米级Pt-CeO2/C电催化剂.透射电镜和X射线衍射表征结果表明,制备的催化剂Pt颗粒均匀分散于碳载体表面,其粒径主要分布于1.5~2.5 nm.将Pt-CeO2/C催化剂制备成质子交换膜燃料电池膜电极,经循环伏安和单电池极化曲线测试发现,Pt-CeO2/C催化剂性能与Pt/C催化剂的相当.一氧...  相似文献   

10.
高温质子交换膜燃料电池(HT-PEMFC)具有高温下电极反应动力学快、催化剂抗毒化能力强及水热管理简单的优点,是当今燃料电池的重要研究领域之一.作为HT-PEMFC的关键部件,高温质子交换膜直接影响着燃料电池的输出性能和使用寿命.磷酸掺杂型高温质子交换膜因其高温低湿或无水条件下较高的质子电导率、良好的化学稳定性及热稳定性等而成为高温质子交换膜材料的研究热点.但是,在实际应用过程中,其面临质子电导率与力学性能难以协同兼顾以及磷酸流失等问题.结合本课题组及国内外的文献报道,本文综述了磷酸掺杂高温质子交换膜的研究现状、关键科学问题及解决策略,展望了HT-PEM的未来发展方向.  相似文献   

11.
甘全全  徐洪峰  张茂峰 《催化学报》2007,28(10):900-904
将超级电容器材料聚苯胺引入电极催化剂中以缓冲燃料电池负载的变化.以硫酸为掺杂剂,将化学法合成的聚苯胺(PANI)与Pt/C超声分散混合,制成PANI-Pt/C催化剂.PANI-Pt/C的循环伏安测试和作为质子交换膜燃料电池阴极电催化剂的电池性能测试表明,PANI含量为10%时能够提高Pt/C催化剂对氧的还原动力学速度和燃料电池放电性能.电池在不同电流负载下的电压动态响应和对电池脉冲电流的动态响应以及PANI-Pt/C催化剂多电位电势阶跃计时电流测试显示,聚苯胺在催化剂中具有在瞬间电流负载时缓冲电池电压和电池大电流放电时平稳电压的作用.  相似文献   

12.
叶跃坤  池滨  江世杰  廖世军 《化学进展》2019,31(12):1637-1652
质子交换膜燃料电池由于具有能量转换效率高、操作温度低、环境友好等优点而备受人们关注。随着2014年丰田发布燃料电池电动汽车Mirai,带来了新一轮燃料电池及燃料电池汽车的产业化热潮。然而,提升质子交换膜燃料电池的寿命,开发新一代长寿命燃料电池膜电极及燃料电池仍然是本领域的挑战性课题。膜电极(MEA)是质子交换膜燃料电池最核心的部件,其耐久性直接决定着燃料电池的寿命。MEA主要由质子交换膜、催化剂层、气体扩散层三部分组成。本文从质子交换膜、催化剂及载体、气体扩散层三个方面介绍了近年来国内外在提升燃料电池膜电极的寿命(耐久性)方面所做的工作,并对未来的相关研究和发展做了述评及展望。  相似文献   

13.
建立了一个新球型催化层微观结构模型, 并基于此模型对质子交换膜燃料电池(PEMFC)性能进行了模拟. 该模型中假设催化层由Pt/C 颗粒和离子聚合物-孔混合相组成. 假设Pt/C 颗粒为球形结构, 其直径符合正态分布, 用不同直径的球来表示随机分散在电极中的Pt/C 颗粒. 计算了催化层内的传递和电化学反应, 研究了质子和氧气及电化学反应速率在电极厚度方向上的分布, 并且通过对比氧气浓度、过电位和电化学反应速率的分布、极化曲线及催化剂利用率等证明了适当的电极厚度与Pt/C颗粒粒径有利于提高电池性能.  相似文献   

14.
燃料电池的性能方面在近年来有很大提高,但要实现商业化其成本和Pt用量需要进一步的降低. 大量的文献工作证明了有序化膜电极有助于提高电极中催化剂的利用率、降低Pt的用量以及增加反应的三相界面,特别是3M公司制备的纳米薄膜电极(NSTFs)是一种高活性,高稳定性的薄膜状催化层,从而电极稳定性也大幅提高. 此外也有不少工作使用导电性好的碳纳米管阵列,以及稳定性高的金属氧化物阵列等作为这种3D结构催化层中催化剂的有序载体,研究进一步提高Pt基催化剂的活性,降低Pt担载量,构效关系等一些基础性的工作. 但是总体上看,现有的有序化膜电极,均需要进一步改进. 本文评述了目前国内外有序化膜电极的研究现状.  相似文献   

15.
优化了碱性阴离子交换膜燃料电池(AAEMFC)使用的气体扩散电极(GDE),发现催化层中PTFE含量与催化剂担载量对电池性能与其电化学动力学特征影响很大.采用i-V曲线,开路电压,电池内阻与在线的电化学阻抗谱与动力学分析,评估了所制GDE的电化学性能.在所研究的AAEMFC电极催化层中,PTFE的最佳含量是20%,Pt载量对膜电极三相界面、催化层导电性与催化剂利用率的影响极大.当制备的GDE催化层中Pt/C的Pt载量为1.0mg/cm2,PTFE含量为20%时,AAEMFC的峰电流密度在50oC达到了213mW/cm2.兼顾Pt催化剂的利用率与成本,在没有明显影响电池性能的情况下,Pt的担载量可降至0.5mg/cm2.  相似文献   

16.
膜电极是质子交换膜燃料电池的核心组件,长期以来,在衣院士的指导下,我国高度重视膜电极技术的开发. 目前,燃料电池的研发和产业化进入了一个新的时代,对膜电极提出来更高的要求,特别是在降低铂载量方面,提出了0.125 mg·W-1的挑战性指标. 本文从活化极化、欧姆极化和传质极化三个方面分析了低铂载量情况下电池性能下降的原因,提出应重点关注催化剂在燃料电池工作区间(0.6 V ~ 0.8 V)的催化活性,并讨论了用电荷传输阻抗作为催化剂活性指示符的合理性. 从优化潜力来说,传质极化优化>活化极化优化>欧姆极化优化. 催化层结构优化是实现低铂目标的关键,重点是解决离子聚合物(ionomer)传递质子和阻碍气体的矛盾.  相似文献   

17.
采用磁控溅射技术在具有织构结构的气体扩散层(GDL)表面制备了可应用于氢氧质子交换膜燃料电池的超低Pt载量阴极催化层, 并通过SEM、 轮廓仪和XRD等测试方法表征了GDL及其载Pt后的形貌和物相, 利用XPS分析溅射Pt的化学价态, 使用电池测试台表征其电池性能. 测试结果表明, 磁控溅射法在GDL表面沉积的Pt催化层载量可控且分布均匀; 与商业GDL对比, Pt在织构GDL表面具有更大的可附着面积. 电池性能测试结果显示, 当Pt载量为0.04 mg/cm2时, 以织构GDL作基材的样品质量比功率高达26.25 kW/g Pt, 远大于商业GDL作基材时的17.76 kW/g Pt, 也大于同等Pt载量下商业Pt/C催化剂的24.00 kW/g Pt.  相似文献   

18.
直接甲醇燃料电池中的膜性能比较   总被引:2,自引:0,他引:2  
邓会宁  李磊  许莉  王宇新 《物理化学学报》2004,20(11):1372-1375
制备了磺化聚醚醚酮(SPEEK)和磺化酚酞型聚醚砜(SPES-C)两种质子交换膜,考察了其质子导电和阻醇性能.实验发现,两种新型质子交换膜具有一定的化学稳定性和质子电导率,尤其在高温下两种新膜的质子电导率与Nafion膜接近.两种新膜的甲醇透过系数要比Nafion膜的低1~2个数量级.分别以两种新型膜和Nafion115膜为电解质制备了直接甲醇燃料电池膜电极,讨论了膜材料的性能对直接甲醇燃料电池性能的影响.结果表明,膜材料的阻醇性越好,电池的开路电压越高;膜的电导率越高,在较高电流密度区域内电池的性能越好.  相似文献   

19.
质子交换膜是质子交换膜燃料电池的核心部件之一,其性能的优劣直接关系燃料电池的工作性能.目前质子交换膜燃料电池多采用全氟磺酸离子膜,全氟磺酸膜虽然具有较高的质子传导性和良好的化学稳定性,但是也具有价格昂贵、甲醇渗透高和高温下质子传导性能下降等缺点.  相似文献   

20.
质子交换膜燃料电池(PEMFC)具有高能量效率和高能量密度、低温快速启动、结构紧凑、无污染、低噪声等优点,在氢能汽车、固定式电站、水下潜艇和通讯电源等方面具有广泛的应用前景.目前影响燃料电池商用化的主要问题是成本和寿命,特别是在工况下急剧的启停、干湿、温度等变化,以及随之带来的机械及电化学老化,严重影响了燃料电池核心部件膜电极的耐久性和稳定性,导致燃料电池寿命大幅度下降.动态负载下燃料电池的寿命较短,距离燃料电池汽车商业化目标寿命仍有较大距离.因此,开发快速有效的膜电极加速老化测试程序,研究膜电极的耐久性,揭示燃料电池失效机理,寻找解决措施,对提高燃料电池使用寿命,推动燃料电池技术商业化,实现国民经济可持续发展具有重大意义.本文通过对比研究膜电极老化测试,从催化材料、质子交换膜以及启停控制策略应用等方面,分析电极、质子交换膜等关键材料的衰减物化机理,从材料科学领域深入探讨提升关键材料耐久性的方法及机理.为燃料电池的各部件制备与设计完善评价体系,推进燃料电池商用化发展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号