首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 421 毫秒
1.
配位不饱和双核钌羰基化合物Ru2(CO)n(n=7,6)的DFT计算研究   总被引:2,自引:0,他引:2  
对配位不饱和双核钌羰基化合物Ru2(CO)n(n=7,6)在BP86/DZP++和MPW1PW91/DZP++ 理论水平下进行了量子化学理论计算研究, 优化得到16个单态和三态异构体, 并讨论其键的性质. 得到的n=7,6基态分别是Cs和C2v构型的单态, 均含有2个配位的桥羰基. 对其离解能的计算表明, 相对于断裂金属钌-钌键而生成2个配位不饱和单核羰基化合物都更容易失去一个羰基.  相似文献   

2.
根据Ru(bipy)2+3/Ru(phen)2+3-C2O2-4-CeⅣ(bipy=2,2′-联吡啶,phen=1,10-邻菲咯啉)化学发光反应建立了该化学发光反应的动力学模型,根据模型计算出该反应的发光强度-反应时间曲线上升及下降阶段的反应速率常数、发光强度最大值及其出现的时间等.发光强度最大值及发光强度-反应时间曲线下的面积均可用于定量分析.  相似文献   

3.
黄剑平  梅平  何治柯 《应用化学》2010,27(7):849-854
研究了Ru(bpy)2(dppx)2+-SDS-DNA(bpy=2,2′-联吡啶,dppx=7,8-二甲基-吡啶并[3,2-a:2′,3′-c]吩嗪)体系的共振光散射光谱。结果表明,在阴离子表面活性剂十二烷基硫酸钠(SDS)预胶束聚集体存在下,Ru(bpy)2(dppx)2+-SDS体系具有很强的共振光散射,DNA的加入使其共振散射光猝灭。探讨了反应机理。基于DNA对Ru(bpy)2(dppx)2+-SDS体系共振光散射的猝灭作用,建立了共振光散射法测定DNA的新方法。在最佳实验条件下,体系在393nm处的共振光散射猝灭程度与DNA的浓度呈线性关系,线性范围为0.01~1.2mg/L,检出限为1.5μg/L。  相似文献   

4.
根据Ru(bipy)_3~(2 )/Ru(phen)_3~(2 )-C_2O_4~(2-)-Ce~Ⅳ(bipy=2,2'-联吡啶,phen=1,10-邻菲咯琳)化学发光反应建立了该化学发光反应的动力学模型,根据模型计算出该反应的发光强度-反应时间曲线上升及下降阶段的反应速率常数、发光强度最大值及其出现的时间等.发光强度最大值及发光强度-反应时间曲线下的面积均可用于定量分析.  相似文献   

5.
采用密度泛函理论方法研究了钡原子对Ru(0001)表面氮分子解离过程的影响.计算结果表明:在Ru(0001)表面,钡原子失去电子后形成Ba(1+δ)+阳离子.表面转移电荷增强了衬底钌原子d轨道和氮分子π轨道间的杂化作用以及氮分子内的库仑排斥作用,减弱了氮分子键.在钡原子的作用下,γ态氮分子键键长从0.113 nm增加到...  相似文献   

6.
开发高效的催化剂用于催化还原CO2转化为甲酸和它的盐类已经成为研究的热点,是因为将CO2转化为C1产物不仅可以解决CO2的含量升高带来的环境问题,还可以解决化石能源燃烧日趋严重的问题。贵金属配合物催化CO2转化为甲酸和甲酸盐类是目前这类反应最有效的方式,尤其是Ru、Ir和Rh等贵金属。我们之前的研究结果表明Ir(Ⅲ), Ru(Ⅱ)类配合物催化还原CO2转化为甲酸盐的活性是由配合物Ru―H键的成键性质决定的。它们能高活性的催化CO2是由于它们都含有同一种特点的Ru―H键,是由Ru的sd2杂化轨道和H的1s轨道杂化而成的,而且这一特点可以被活性氢的对位配体显著影响。鉴于硼基配体具有强的对位效应,我们基于高活性的均相催化剂Ru(PNP)(CO)H2 (PNP = 2, 6-二(二叔丁基磷甲基)-吡啶)设计了Ru-PNP-HBcat和Ru-PNP-HBpin,并计算了二者催化还原CO2的活性。Bcat和Bpin配体是实验上常用的硼基配体。我们的计算结果表明Ru-PNP-HBcat和Ru-PNP-HBpin有比Ru-PNP-H2更长的Ru―H键、亲核性更强的活性氢,其Ru―H键中的Ru原子的d轨道杂化成分的贡献也比Ru-PNP-H2的更少。相应地Ru-PNP-HBcat和Ru-PNP-HBpin活化CO2的能垒比Ru-PNP-H2低。而且Ru-PNP-H2、Ru-PNP-HBcat和Ru-PNP-HBpin催化CO2转化为甲酸盐的能垒分别为76.2、67.8、54.4 kJ∙mol-1,表明Ru-PNP-HBpin具有最高的催化活性。因此,钌配合物催化还原CO2的活性可由硼基配体强的对位效应和Ru―H键的成键性质来调控。  相似文献   

7.
探讨了在CO2加H2合成HCOOH过程中原位合成的固载Ru基催化剂的可能结构、CO2的活化方式以及可能的反应机理. 在反应中, 固载Ru配合物中的一个P配体首先解离, 被质子型溶剂ROH取代而生成循环活性物质, 然后CO2正插入Ru—H键生成甲酸酯配合物, 之后甲酸酯配合物中的Ru—O2CH键被H2氢解生成HCOOH, 而本身重新转化为活性物质, 完成催化循环.  相似文献   

8.
探讨了在CO2加H2合成HCOOH过程中原位合成的固载Ru基催化剂的可能结构、CO2的活化方式以及可能的反应机理. 在反应中, 固载Ru配合物中的一个P配体首先解离, 被质子型溶剂ROH取代而生成循环活性物质, 然后CO2正插入Ru—H键生成甲酸酯配合物, 之后甲酸酯配合物中的Ru—O2CH键被H2氢解生成HCOOH, 而本身重新转化为活性物质, 完成催化循环.  相似文献   

9.
合成了含有嵌入配体二吡啶并[3,2-a:2′,3′-c]-吩嗪(dppz)的钌配合物二联吡啶二吡啶并[3,2-a;2′,3′-c]吩嗪钌([Ru(bpy)2dppz]2+),并对其结构和物理化学性质进行了表征。采用方波伏安法研究了[Ru(bpy)2dppz]2+与天然双链小牛胸腺DNA的相互作用,实验结果表明,[Ru(bpy)2dppz]2+配合物的嵌入配体会嵌入DNA的碱基对中,与DNA结合形成体积较大的"金属配合物-DNA"联合体,该联合体在电解质溶液中扩散速度较慢,导致溶液中游离的钌配合物分子减少,峰电流信号降低。计算得到[Ru(bpy)2dppz]2+与DNA的结合常数Ka=1.7×105 L/mol,结合位点n=0.84。  相似文献   

10.
利用太阳能在温和条件下实现CO2还原反应,不仅可以缓解过度消耗化石能源造成的能源危机,还可以改善诸如温室效应和海洋酸化等环境问题.光热协同催化可以有效降低催化反应温度,具有较大的应用前景.本文利用Ru与暴露TiO2{001}晶面的TiO2载体产生的金属-载体相互作用,经过高温氢气煅烧后,获得具有丰富表面氧空位的Ru/TiO2催化剂.活性测试结果表明,具有丰富表面氧空位的Ru/TiO2表现出优异的CO2甲烷化活性,反应过程中甲烷的TOF值在300°C时可以达到22 h-1,但该催化剂却表现出较差的稳定性,在反应10小时后,甲烷的TOF值逐渐降低到19 h-1.将紫外光引入到Ru/TiO2热催化甲烷化体系中,甲烷的TOF值增加到30 h-1,且兼具高稳定性.热催化反应过程中逐渐消失的表面氧空位和部分氧化的Ru是活性降低的主要原因.在光热协同反应中,光生电子的产生稳定了Ru表面的电子密度,同时也再生了催化剂上表面氧空位,这有效地提高了反应的活性和稳定性.程序升温原位红外和X射线光电子能谱实验结果表明,当催化剂表面具有丰富的表面氧空位时,CO2可以有效地在Ru纳米粒子上解离成CO中间体,随后吸附在Ru上的CO中间体解离成表面碳物种,并加氢产生甲烷.在热催化反应过程中,Ru纳米粒子逐渐被氧化成Ru Ox物种,且表面氧空位被CO中间物种覆盖,降低了催化反应的稳定性.当紫外光引入到上述反应中,催化剂的表面氧空位可有效提高光生载流子的分离能力.TiO2载体产生的光电子转移至Ru表面,稳定了金属Ru纳米粒子的价态.另外,载体产生的光生空穴加速了H2质子化,提高了催化剂对氢气的活化迁移能力,促进了CO中间体的加氢甲烷化反应,进而再生表面氧空位.因此在紫外光照下,兼顾提高了热催化CO2甲烷化的活性和稳定性.值得注意的是,当Ru负载于暴露少量TiO2{001}晶面的TiO2载体上时,产生了强金属-载体相互作用并抑制了H2在催化剂上的吸附活化,不利于产生表面氧空位.因此暴露少量TiO2{001}晶面的Ru/TiO2催化剂也不利于光生载流的产生和分离,这导致热催化或光热协同催化反应活性较低.  相似文献   

11.
倪军 《分子催化》2013,(6):530-538
通过钌的络合物前驱体和硝酸钡的共浸渍制备的Ru Ba K/AC催化剂氨合成转化效率高,其氨合成转化频率在0.87~1.30 s-1之间,与氯化钌制备的Ru/AC催化剂相比,其转化频率提高幅度在26%~88%。共浸渍法制备的催化剂氨合成转化效率高,其主要原因可能是共浸渍法制备的催化剂钌粒子粒径分布区间较窄,易形成更多的活性位;钌表面氢的吸附受到抑制,氮更易活化,因而催化效率更高。  相似文献   

12.
以柳树落叶为生物质碳源, 氨水为氮源, 采用溶胶-凝胶法制备了一系列氮掺杂多孔炭材料(WNC), 并对其结构和物理化学性质进行了表征. 结果表明, WNC材料具有较高的比表面积(528~618 m2/g)和多级孔结构; 材料表面含有丰富的含氧和含氮官能团(氮摩尔分数为8.9~9.9%); WNC材料对水体系中的亚甲基蓝(MB)表现出良好的吸附性能, 吸附为自发吸热过程, 符合Langmuir等温吸附和准二级动力学模型, 在pH值为5、 室温下最大吸附量为263.2 mg/g, 且材料可以多次循环使用. 对WNC-2及吸附染料MB后的WNC-2样品进行高温再焙烧处理, 所得样品(WNC-2-R和WNC-2-MB)的ζ电位明显升高, 表面碱性增强, 吸附容量分别提高到之前的1.3倍和1.6倍. 结合各种表征结果, 可以认为WNC材料的高比表面积和多级孔结构有利于吸附质(亚甲基蓝离子)的传输, 并能与材料表面的羰基、 醌基和吡啶氮等基团发生较强的相互作用, 从而使其表现出较高的吸附速率和吸附量.  相似文献   

13.
采用氧化-还原共沉淀法制备了Pr掺杂的Ru/CeO2-PrO2氨合成催化剂,并运用N2物理吸附、X射线粉末衍射、H2程序升温还原、CO化学吸附、N2程序升温脱附、场发射扫描电镜、高分辨透射电镜和X射线光电子能谱等技术对其进行了表征,考察了Pr添加量对催化剂表面结构和性能的影响.结果表明,Pr掺杂对Ru/CeO2催化剂的比表面积和Ru分散度都有所影响.当CeO2中Pr掺杂量为4%时,在425oC,10MPa,10000h–1的反应条件下,氨合成转化频率可达到12.13×10–2s–1,较Ru/CeO2催化剂提高了58%,这主要归结于复合材料电子传导性能的提高.  相似文献   

14.
Ruthenium (Ru) serves as a promising catalyst for ammonia synthesis via the Haber-Bosch process, identification of the structure sensitivity to improve the activity of Ru is important but not fully explored yet. We present here density functional theory calculations combined with micro-kinetic simulations on nitrogen molecule activation, a crucial step in ammonia synthesis, over a variety of hexagonal close-packed (hcp) and face-center cubic (fcc) Ru facets. Hcp \begin{document}$\left\{ {21\overline 3 0} \right\}$\end{document} facet exhibits the highest activity toward N\begin{document}$_2$\end{document} dissociation in hcp Ru, followed by the (0001) monatomic step sites. The other hcp Ru facets have N\begin{document}$_2$\end{document} dissociation rates at least three orders lower. Fcc \begin{document}$\{211\}$\end{document} facet shows the best performance for N\begin{document}$_2$\end{document} activation in fcc Ru, followed by \begin{document}$\{311\}$\end{document}, which indicates stepped surfaces make great contributions to the overall reactivity. Although hcp Ru \begin{document}$\left\{ {21\overline 3 0} \right\}$\end{document} facet and (0001) monatomic step sites have lower or comparable activation barriers compared with fcc Ru \begin{document}$\{211\}$\end{document} facet, fcc Ru is proposed to be more active than hcp Ru for N\begin{document}$_2$\end{document} conversion due to the exposure of the more favorable active sites over step surfaces in fcc Ru. This work provides new insights into the crystal structure sensitivity of N\begin{document}$_2$\end{document} activation for mechanistic understanding and rational design of ammonia synthesis over Ru catalysts.  相似文献   

15.
Strong metal-support interactions (SMSI) have gained great attention in the heterogeneous catalysis field, but its negative role in regulating light-induced electron transfer is rarely explored. Herein, we describe how SMSI significantly restrains the activity of Ru/TiO2 in light-driven CO2 reduction by CH4 due to the photo-induced transfer of electrons from TiO2 to Ru. In contrast, on suppression of SMSI Ru/TiO2−H2 achieves a 46-fold CO2 conversion rate compared to Ru/TiO2. For Ru/TiO2−H2, a considerable number of photo-excited hot electrons from Ru nanoparticles (NPs) migrate to oxygen vacancies (OVs) and facilitate CO2 activation under illumination, simultaneously rendering Ruδ+ electron deficient and better able to accelerate CH4 decomposition. Consequently, photothermal catalysis over Ru/TiO2−H2 lowers the activation energy and overcomes the limitations of a purely thermal system. This work offers a novel strategy for designing efficient photothermal catalysts by regulating two-phase interactions.  相似文献   

16.
Nanostructured titanium dioxides were synthesized via various post-treatments of titanate nanofibers obtained from titanium precursors by hydrothermal reactions. The microstruc-tures of TiO2 and supported Ru/TiO2 catalysts were characterized with X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray analysis, and nitrogen adsorption isotherms. The phase structure, particle size, morphology, and specific surface area were de-termined. The supported Ru catalysts were applied for the selective methanation of CO in a hydrogen-rich stream. The results indicated that the Ru catalyst supported on rutile and TiO2-B exhibited higher catalytic performance than the counterpart supported on anatase, which suggested the distinct interaction between Ru nanoparticles and TiO2 resulting from different crystalline phases and morphology.  相似文献   

17.
本文采用原位合成法制备了钌/氮掺杂石墨烯(Ru/NGR)催化剂,并采用X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)等手段对催化剂的结构形貌进行了表征。将Ru/NGR催化剂应用于硼氢化钠水解制氢体系,考察了钌的负载量、硼氢化钠的浓度、反应温度等对硼氢化钠产氢的催化性能的影响。研究结果表明:当温度为25℃,硼氢化钠浓度为2 wt%,钌负载量为3.9%时,产氢速率可达32.95 L·(gRu·min)^-1。通过对Ru/NGR催化剂催化硼氢化钠水解反应动力学数据研究研究得出该催化剂的活化能为46 kJ·mol^-1。  相似文献   

18.
采用量子化学计算方法研究了H2O2 氧化N2 生成N2O 和H2O 的机理.结果发现, H2O2 氧化N2 先通过1 个四元环过渡态形成中间体H2N2O2 分子,H2N2O2 再通过一个五元环过渡态形成N2O和H2O.根据计算得到的每步反应的活化能,得知H2O2 氧化N2 生成中间体H2N2O2 分子是整个反应的控制步骤.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号