首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用Benson基团贡献法计算了乙烯齐聚制α-烯烃反应各物质的标准摩尔生成焓、标准摩尔熵和摩尔定压热容,在298~700 K温度范围内对乙烯齐聚制α-烯烃反应体系的反应热、吉布斯自由能以及反应平衡常数进行了详尽的计算,分析了不同反应步骤的热力学平衡与限度,对不同反应发生的热力学可能性与顺序进行了判断,考察了反应温度和压力对乙烯齐聚制α-烯烃反应化学平衡的影响,确定了乙烯齐聚制α-烯烃反应体系适宜的工艺条件.结果表明:乙烯齐聚制α-烯烃反应为放热反应;从热力学上看,温度低于546 K时,乙烯齐聚生成直链α-烯烃反应为自发过程,且比α-烯烃异构化和烯烃歧化反应更容易进行;低温、高压有利于乙烯齐聚制α-烯烃反应的进行;乙烯齐聚制α-烯烃反应体系适宜的工艺条件为温度323~473 K,压力5~20 MPa,且在SHOP法的工艺条件下(温度363 K,压力10.3 MPa),乙烯齐聚生成直链α-烯烃反应的热力学平衡转化率接近于100%.  相似文献   

2.
ZSM-5上甲醇制烯烃反应中低碳烯烃的成因   总被引:6,自引:0,他引:6  
考察和比较了573—823K范围内HZSM-5上甲醇、C_2—C_(12)直链烯烃(除C_7~=为庚烯-2外,其它均为α-烯烃),以及C_6—C_(12)正构烷烃的转化产物分布,用TPSR技术追踪了甲醇转化反应的历程。结果表明甲醇转化过程中较长链烯烃(或其前体)的裂解对最终产物分布有很大影响。高于723K时,低碳烯烃,特别是乙烯,主要源于这些较长链烯烃的次级裂解。且温度愈高,愈有利于生成乙烯。甲烷含量在623K附近有一极大值。证实甲烷为甲醇转化的第一个烃类产物,极化了的表面(+)CH_3是产生初始C-C键的活性中间物种。讨论了甲醇转化的机理。  相似文献   

3.
本文研究了在脉冲微型反应装置上乙烷-丙烷混合裂解反应。反应条件范围为:温度700—825℃,停留时间0.04—2.0 s,进口压力1.05—1.3atm,混合进料的稀释比为N_2:(C_2H_6 C_3H_8)=1:1.25,混合原料中乙烷与丙烷之间的相对比C_2H_6:C_3H_8=1:0—O:1。本文研究了混合烃中各组份之间在混合裂解过程中的相互作用,提出了一个由十八个反应组成的自由基反应机理模型,并进行了动力学参数估值。由此模型计算的裂解产物分布和选择性与文献值较为吻合。本文研究结果对于以油田气和天然气资源为裂解原料指出了经济利用的途径。  相似文献   

4.
直链低碳α-烯烃(指十碳以下的正构α-烯烃)是重要的基本化工原料,广泛用于合成润滑油、增塑剂、精细化工产品及共聚单体.以过渡金属络合物催化乙烯齐聚获得直链α-烯烃被认为是当前最先进的方法.镍络合物体系催化乙烯齐聚得到α-烯烃的SHOP法是Ⅷ族金属络合物催化反应的代表.它是以得到高碳α-烯烃为目的.以ⅣB族金属络合物为基础的体系主要催化烯烃高聚,催化齐聚的研究工作尚少.近年来曾有锆酸酯和烷基铝催化乙烯齐聚的报导,其C_4-C_8烯烃的收率最高可达92%.本文将报导用简单易得的锆盐和烷基铝为基础组成的体系催化乙烯齐聚的结果,及对此类催化体系的失活问题进行探讨.  相似文献   

5.
对C_5烃(正戊烷、1-戊烯)的裂解反应产物进行分析,按照理想正碳离子和自由基反应机理,正戊烷和1-戊烯裂解生成低碳烯烃(C_2H_4+C_3H_6+C_4H_8)的摩尔选择性分别达到50%和100%。但是使用MFI-30分子筛,在650℃反应条件下,正戊烷和1-戊烯催化裂解生成低碳烯烃的摩尔选择性分别为23.41%和56.79%,说明分别有26.59%和43.21%的低碳烯烃发生了氢转移反应。进一步考察了不同类型分子筛和关键反应温度对C_5烃催化裂解过程中氢转移反应的影响,研究发现,小孔结构、低酸密度的分子筛和较高反应温度,可以不同程度地抑制氢转移反应,提高低碳烯烃的选择性。在650℃条件下,当分子筛由大孔结构、高酸量的FAU更换为小孔结构、低酸量的MFI-120时,正戊烷和1-戊烯催化裂解的氢转移系数HTC分别减小96.86%和50.58%,焦炭选择性分别由11.91%和20.77%减小到0.75%和0.89%,低碳烯烃(C_2H_4+C_3H_6+C_4H_8)的选择性分别由14.25%和25.14%增加到46.28%和62.58%。  相似文献   

6.
电子鼻测定植物挥发性有机物方法研究   总被引:2,自引:0,他引:2  
建立了电子鼻技术(GC/SAW)快速实时检测植物挥发性有机物(BVOCS)的分析方法。考察了检测器温度、进样温度、柱温、升温速率等因素的影响,确定了电子鼻技术分析BVOCS的最佳条件为:检测器温度60℃、进样口温度100℃、柱温40~145℃(10℃/s)、阀温145℃、预浓缩管250℃、载气流速3mL/min。在上述条件下,测得不同时间(日内、日间)α-蒎烯和异戊二烯分别在0.027~8.580mg·L-1、0.425~68.100mg·L-1范围内线性良好;α-蒎烯和异戊二烯的回收率分别在90.74%~107.41%和91.29%~102.88%之间;相对标准偏差(RSD)均小于5%;检测限在0.2~1.0μg·L-1内。  相似文献   

7.
提出了热裂解气相色谱-质谱法(Py-GC-MS)研究聚四氟乙烯涂层的热裂解性质。采用管炉型热裂解装置和不锈钢毛细管柱,根据样品的复杂程度进行分阶段释放气体分析,得到聚四氟乙烯涂层不同热裂解阶段的释放气体色谱图。结果表明:聚四氟乙烯涂层在100~300℃热裂解温度下检测到的热裂解产物为1,4-二甲基-2,5-二乙基苯、异丙氧基苯胺、双酚A;在300~380℃热裂解温度下检测到的热裂解产物为苯乙烯、α-甲基苯乙烯、4,4′-二甲基苯胺;在380~460℃热裂解温度下检测到的热裂解产物为苯酚、苯胺、对氨基甲苯、二苯醚;在460~600℃热裂解温度下检测到的热裂解产物为四氟乙烯单体。  相似文献   

8.
采用BT2.15型Calvet微量量热计常压下测定了α-蒎烯+对伞花烃和β-蒎烯+对伞花烃两个二元体系在298.15 K、308.15 K及318.15 K下的超额焓. 实验数据采用Redlich-Kister方程进行关联, 标准偏差较小. 该两个二元体系的超额焓在全浓度范围内均为正值, 其最大值在摩尔分数x1=0.5附近. 温度对超额焓有一定的影响, 超额焓随温度的升高而增大. 相同温度下, α-蒎烯+对伞花烃体系的超额焓比β-蒎烯+对伞花烃体系的大.  相似文献   

9.
1-辛烯的Ziegler-Natta聚合动力学(Ⅰ)——稳态动力学规律   总被引:3,自引:2,他引:3  
过去对C_6—C_(20)α-烯烃的Ziegler-Natta聚合动力学仅有少量研究,未发现与乙烯、丙烯的聚合行为有显著不同。但1-辛烯在烃类溶剂中的聚合是溶液聚合,这是与析出聚合的主要差别。本文发现并研究了1-辛烯以α-TiCl_3-AlEt_3催化在正庚烷中聚合时的特殊动力学行为,对此提出了初步解释。  相似文献   

10.
硅沸石—2在合成气制低碳烯烃中的催化作用   总被引:1,自引:0,他引:1  
在n-C_4H_11N-Na_2O-SiO_2-H_2O体系中,首次用正丁胺为模板剂合成了silicalite-2(硅沸石-2)。Silicalite-2在合成气制烯烃反应中作为活性组份载体对产物C_—C_4烯烃具有较高的选择性;改变合成条件可使silicalite-2X射线衍射图谱中2θ=8.7°,23.0°两峰的峰强比发生规律性变化,而峰强比值的改变将引起催化性能变化。负载铁、钾的silicalite-2催化剂用于一氧化碳加氢合成低碳烯烃反应,在反应温度250℃、空速200h~(?)、CO/H_2摩尔比为1的条件下,产物中C_2—C_4烯烃选择性可达65%。  相似文献   

11.
大同煤在不同温度下快速热解的液体产物   总被引:3,自引:0,他引:3  
王杰  王复 《燃料化学学报》1993,21(4):442-448
用热解-色谱-质谱联用技术测定了大同煤快速热解液体产物的组成。比较了低温和高温热解液体产物的组成之间的特征差异。在530℃至950℃范围内,考察了温度对主要液体产物包括脂肪烃(C_7~C_(19))、苯类化合物、酚类化合物和萘类化合物的影响。还根据煤分子结构模型对产物形成进行了探讨。  相似文献   

12.
麻浆卷烟纸热裂解产物的气相色谱/质谱分析   总被引:1,自引:0,他引:1  
孙川  桂永发  缪明明 《应用化学》2008,25(12):1478-0
采用热失重(TG)和裂解气相色谱/质谱法(PyGC/MS)研究了麻浆卷烟纸的热裂解行为.在He气气氛围中,将麻浆卷烟纸分别在400、500、600、700、800和900℃下进行热裂解,并以GC/MS对其裂解产物进行定性和半定量分析.结果表明,不同的裂解温度直接影响生成产物的类型和相对含量.麻浆卷烟纸可裂解出1-甲基-1,3-环戊二烯、2-甲基呋喃、2,3-二氢香豆酮、苯和甲苯等156种产物.低温下,裂解产物主要为烯类、呋喃类和酮类化合物;随着裂解温度的增加,烯、酮类的含量下降,苯及其衍生物和稠环芳烃的含量逐渐增加.可通过降低卷烟燃烧温度来降低卷烟纸裂解产生的有害成分含量.如果单纯考虑麻浆卷烟纸的影响,卷烟的最佳燃烧温度应控制在500℃左右.  相似文献   

13.
后过渡金属烯烃聚合催化剂的研究进展   总被引:4,自引:0,他引:4  
综述了近两年来后过渡金属(VIII族)催化剂在乙烯、丙烯和α-烯烃聚合,α-烯烃和极性单体共聚,α-烯烃活性聚合,以及乙烯齐聚等方面的最新进展.  相似文献   

14.
本文报道了用碱熔试剂(氢氧化钠-醋酸钠熔融混合物)在封管内进行霍夫曼降解反应,以TAMA和DDMA为对象,研究最佳反应条件,得到高产率的α-烯烃。最佳反应条件为160℃,碱熔试剂为样品量的25倍,反应2小时,为GC测定阳离子表面活性剂亲油基分布提供了可行的分析方法。  相似文献   

15.
本文报道应用热裂解气相色谱-离子阱联用系统研究了固体表面活性剂(十二烷基磺酸钠和十二烷基苯磺酸钠)的梯度热裂解产物。结果表明:当热解温度为350~400℃时,表面活性剂磺酸盐中的杂质将以热提的形式除去,裂解温度为600℃时可获得磺酸盐表面活性剂的最佳裂解产物。  相似文献   

16.
以脲素和甲醛为原料、PVA为改性剂,合成了脲醛预聚体,并通过原位聚合法对聚α-烯烃颗粒进行微胶囊包覆;考察了反应温度、反应时间、PVA改性剂以及脲素和甲醛的摩尔比对脲醛预聚体制备及最终包覆效果的影响。结果表明:PVA的加入改善了脲醛预聚体的合成,当脲素与甲醛的摩尔比为2:3、PVA含量占脲素甲醛溶液质量的3.30%、反应温度为70℃、反应时间为120min时,制备的预聚体性质稳定,并且在丁醇-水介质中,对聚α-烯烃颗粒有较好的包覆效果,包覆率达15.3%。  相似文献   

17.
在长链α-烯烃共聚物研究中,需要测定共聚物分子中不同长度支链的比例及共聚竞聚率,然而,碳数相近的α-烯烃的结构和性质相似,因此难以用一般物理和化学方法测定。本文将毛细管气相色谱应用于α-烯烃共聚物研究,通过测定聚合反应前、后反应液组成的变化,来计算各单体的消耗量,得到共聚物的组成,按Fineman Ross公式计算得共聚单体的竞聚率。 实验部分 (一)试剂 庚烯-1、辛烯-1、癸烯-1、  相似文献   

18.
乙烯齐聚催化剂研究进展   总被引:2,自引:0,他引:2  
综述了乙烯齐聚催化剂的研究进展.按照碳链的原子数目,简要介绍了α-烯烃的用途.按照后过渡金属催化剂和前过渡金属催化剂分类介绍了乙烯齐聚催化剂的研究情况,并重点介绍了乙烯三聚催化剂的研究进展,给出了部分聚合机理.文章最后介绍了α-烯烃除用乙烯齐聚催化剂方法外,还有石蜡热裂解、烷烃催化裂解、烷烃脱氢、烯烃二聚和歧化等方法制备.乙烯齐聚法所得产品线性化程度高,聚合度分布窄,分离费用低,产品质量好.在我国,石蜡裂解法为主要生产方法,因此在我国开展乙烯齐聚的研究,开发具有自主知识产权的齐聚催化剂,具有十分重要的意义.  相似文献   

19.
用在位富氏变换红外光谱技术,测定了SRC沥青烯样品在热解及氧化热解过程中各种功能团的消长动态。当样品在空气中加热时,生成羰基的温度比A-240石油沥青在相同条件下生成同一基团提前40℃,即从190℃提前到150℃。与此同时,生成酚羟基的温度比A-240沥青提前60℃,为170℃。同样品在快速升温条件下经受热氧化时,于360℃生成表征酸酐的1830cm~(-1)吸收峰和表征酯类化合物的1745cm~(-1)吸收峰。氧化反应使脂肪基团快速减少,当反应温度达到420℃时,它们完全消失。沥青烯样品在惰性气流中热解时,脂链裂解以C_α-C_β链断裂为主,烷基的热解脱除比它们在空气气流中氧化消失要慢得多。含氧基团在惰性气流中大都分解消失,惟酚羟基残存。羧基在低温下氧化而生成并积累,但当温度达到350℃时则开始分解。  相似文献   

20.
制备了硅胶负载型2,6-二亚胺基吡啶铁系齐聚催化剂。考察了不同负载温度,聚合中乙烯加压方式,催化剂的加入量以及丙烯对乙烯齐聚活性和α-烯烃分布的影响。结果表明,低温负载有利于催化剂活性提高,分段加压可以使催化剂的活性周期增加,聚合温度平稳,单位助催化剂MAO转化的乙烯量增加,而α-烯烃的选择性基本不变。Fe催化剂负载后,以单位助催化剂MAO计算的乙烯转化率提高。增加催化剂的量后,单位助催化剂MAO转化的乙烯量增加。在乙烯齐聚中加入少量丙烯催化剂的活性降低,α-烯烃分布向低碳方向移动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号