首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
采用Hypersil硅胶柱,在流动相为正己烷-四氢呋喃(体积比90:10),流速为1.0mL/min,检测波长为230nm,柱温为20℃时,速霸螨中克螨特和唑螨酯得到很好分离;克螨特的平均回收率为100%,标准偏差为0.65g/L,相对标准偏差为0.66%;唑螨酯的平均回收率为98%,标准偏差为0.08g/L,相对标准偏差为0.29%;方法简便、快捷、准确。  相似文献   

2.
中药土鳖虫溶栓成分的分离纯化研究   总被引:2,自引:0,他引:2  
对土鳖虫水浸醇沉提取物2号样品进行了离子交换柱层析,得组分Ⅰ、Ⅱ、Ⅲ。实验结果表明,组分Ⅲ的溶栓活性明显高于组分Ⅰ和组分Ⅱ,其蛋白质占量为88.9%,分子量约为38,018,效价为313UK/mg,比活力为352UK/mg蛋白。将组分Ⅲ再进行凝胶过滤柱层析,得组分Ⅳ、Ⅴ、Ⅵ。组分Ⅵ的生物活性高于组分Ⅳ和组分Ⅴ,蛋白质含量为89.3%,电泳呈现两条带,分子量约为34,623和39,811,效价为77UK/mg,比活力为86UK/mg蛋白。将组分Ⅵ进行反相高效液相色谱柱层析,收集保留时间为17min的洗脱峰,得到土鳖虫纯蛋白质,呈白色絮状,极易溶于水。再一次用反相高效液相色谱检查其纯度,保留时间为17.073min.无杂质峰。纤溶活性实验结果表明,组分Ⅵ既有直接降解纤维蛋白的作用,同时也有纤溶酶原激活剂样作用。  相似文献   

3.
石墨炉原子吸收光谱法直接测定血样中硒   总被引:2,自引:0,他引:2  
用石墨炉原子吸收光谱法,以硝酸铜和硝酸铵为基体改进剂,塞曼效应扣背景,采用标准加入法可直接测定血样中硒,回收率为95%~105%,相对标准偏差为5.8%,检出限为96pg,测定结果准确可靠。  相似文献   

4.
壳聚糖富集FAAS法测定水中痕量Cu(Ⅱ)   总被引:5,自引:1,他引:4  
了以壳聚糖作富集柱,稀H2SO4为洗脱剂,稀NaOH为再生剂,火焰原子吸收光谱法简便,快速分离集测定水中痕量Cu(Ⅱ)的方法,于波长325nm处测定,检出限为为20ng.ml^0-1,线性范围为10-20μg.ml^-1。  相似文献   

5.
新会柑皮中抗白血病主要成分的鉴定   总被引:3,自引:0,他引:3  
蔡蔡花  文剑明 《分析化学》1997,25(11):1270-1273
本实验采用GC/MS分离、鉴定新会柑皮抗小鼠髓性单核细胞性白血病提取物中的5种成分,即化合物Ⅰ为4’,5,6,7,8-五甲氧基黄酮,化合物Ⅱ为4’,5,7,8-四甲氧基黄酮,化合物Ⅲ为5-羟基,3’,4’,6,7,8-五甲摒在黄酮,化合物Ⅳ为3’,4’,5,6,7,8-  相似文献   

6.
N-苯基-α-氨基酸的微波合成及表征   总被引:3,自引:2,他引:3  
周运友  严正权  胡蕾  徐敏  王伦 《合成化学》2003,11(6):533-535
以溴苯,α-氨基酸为原料,碘化亚铜为催化剂,DMF为溶剂,在碱性介质中微波辐射合成了目标化合物,并以颉氨酸与溴苯的偶联为模型反应进行条件优化,产物结构经IR,1H NMR表征。  相似文献   

7.
建立一种气相色谱测定交联透明质酸钠凝胶中修饰度的分析方法。通过沸水酸解的方法提取凝胶中的丙三醇物质,以丙三醇为外标,采用气相色谱法进行定量分析。采用PEG-20M毛细管柱(30.0 m×0.32 mm,0.50μm),柱温为250℃,采用氢火焰离子化检测器(FID)检测,检测器温度为290℃,载气流量为30 mL/min,载气为高纯氮气,流量为3.0 mL/min。丙三醇质量浓度在8.16~122μg/mL范围内与色谱峰面积线性关系良好,线性方程为y=3 266.9x-8 404.7,相关系数r=0.999 7,方法检出限为0.037μg/mL,定量限为0.83μg/mL,样品加标回收率为99.17%~99.94%,测定结果的相对标准偏差为0.77%(n=6)。  相似文献   

8.
建立了测定对羟基苯海因(HPHT)的反相高效液相色谱法。固定相为Spherigel ODS C18柱,流动相为乙睛-水-四氢呋喃-冰乙酸,体积比为70:30:0.5:0.5,检测波长为254nm。方法的线性范围为0.1~17.5mg,回归方程A=2062.3,m=293.3,相关系数为0.9995,相对标准偏差为0.86%,检出限为4.3ug,加标回收率为99.3%~102.0%。  相似文献   

9.
研究了咪唑及其衍生物配合CuCl对甲醇液相氧化羰化合成碳酸二甲酯的催化性能。筛选出溶解性好、腐蚀性小且催化活性高的多功能助催剂。实验结果表明,反应体系中加入N-甲基咪唑后,CuCl可以完全溶解。当催化剂的浓度为0.2 mol/L, N-甲基咪唑与CuCl的量为4∶1,反应温度为120 ℃,反应压力为2.40 MPa,CO与O2的进气比2∶1,反应3 h的条件下甲醇的摩尔转化率为15.4%,选择性为98%以上。从腐蚀性试验结果看,50 ℃时,加入N-甲基咪唑化合物后,Q235钢在CuCl/CH3OH/H2O/CO/O2体系中的腐蚀速率为0.22mm/a,缓蚀效率为94.5%。动力学研究表明,反应近似为一级,加入N-甲基咪唑后,反应速率常数为0.15 min-1。  相似文献   

10.
建立测定依达拉奉注射液中亚硫酸根离子含量的离子色谱法。采用IonPac AS11-HC阴离子分析柱(250mm×4.6 mm,7.5μm),柱温为25℃,以15 mmol/L氢氧化钾溶液作为淋洗液,流量为1.0 mL/min,检测器为电导检测器,检测器温度30℃,抑制器为自动再生抑制模式,抑制电流40 mA,进样体积为25μL,用离子色谱法测定亚硫酸盐,硫酸根离子质量浓度在0.1~200μg/mL范围内与色谱峰面积线性关系良好,相关系数为0.999 8。该方法检出限为0.027μg/mL,定量限为0.072μg/mL。亚硫酸根离子在水溶液中8 h内稳定。样品加标回收率为98.5%~100.6%,相对标准偏差为0.7%(n=9)。该方法操作简单,专属性强,灵敏度高,重复性好,可用于依达拉奉注射液中亚硫酸盐含量的测定。  相似文献   

11.
用正丁胺作为碳源,采用射频辉光放电制备碳膜,选用激光染料R6G和聚乙二醇混合液作为蒸气源,采用单源热蒸发,在蒸发室与染料同时沉积得到混合膜,用拉曼光谱和红外光谱分析了碳膜的结构和键合方式,分析表明:碳膜中存在胺基团和氢原子.混合膜的荧光谱测量结果表明,认为正丁胺对染料荧光谱的影响是因为胺基和氢原子的存在.  相似文献   

12.
PP/clay composites with different dispersions, namely, exfoliated dispersion, intercalated dispersion and agglomerates and particle-like dispersion, were prepared by direct melt intercalation or compounding. The effect of clay dispersion on the crystallization and morphology of PP was investigated via PLM, SAXS and DSC. Experimental results show that exfoliated clay layers are much more efficient than intercalated clay and agglomerates of clay in serving as nucleation agent due to the nano-scale dispersion of clay, resulting in a dramatic decrease in crystal size (lamellar thickness and spherulites) and an increase of crystallization temperature and crystallization rate. On the other hand, a decrease of melting temperature and crystallinity was also observed in PP/clay composites with exfoliated dispersion, due to the strong interaction between PP and clay. Compared with exfoliated clay layers, the intercalated clay layers have a less important effect on the crystallization and crystal morphology. No effect is seen for samples with agglomerates and particle-like dispersion, in regard to melting temperature, crystallization temperature, crystal thickness and crystallinity.  相似文献   

13.
Phase and structural relationships of the sulfur, selenium, and tellurium compounds of the 4d and 5d transition elements of groups IV to VII of the periodic system are discussed. Homologous elements behave very similarly with respect to the chalcogens, and this is particularly the case for niobium and tantalum, and for molybdenum and tungsten. However, zirconium, niobium, and molybdenum have a greater tendency towards formation of chalcogen-poor phases than their homologues hafnium, tantalum, and tungsten. Subchalcogenides are known only for zirconium and niobium. The number of phases and the tendency towards formation of solid solutions are considerably smaller among the tellurides than among the sulfides and selenides. The crystal structures of the telluride phases also differ from those of the sulfide and selenide phases of analogous composition. In addition, a review of the phase and structural relationships of the arsenic and antimony compounds of the 4d and 5d transition elements of groups V to VII is given.  相似文献   

14.
The RosettaCarbohydrate framework is a new tool for modeling a wide variety of saccharide and glycoconjugate structures. This report describes the development of the framework and highlights its applications. The framework integrates with established protocols within the Rosetta modeling and design suite, and it handles the vast complexity and variety of carbohydrate molecules, including branching and sugar modifications. To address challenges of sampling and scoring, RosettaCarbohydrate can sample glycosidic bonds, side‐chain conformations, and ring forms, and it utilizes a glycan‐specific term within its scoring function. Rosetta can work with standard PDB, GLYCAM, and GlycoWorkbench (.gws ) file formats. Saccharide residue‐specific chemical information is stored internally, permitting glycoengineering and design. Carbohydrate‐specific applications described herein include virtual glycosylation, loop‐modeling of carbohydrates, and docking of glyco‐ligands to antibodies. Benchmarking data are presented and compared to other studies, demonstrating Rosetta's ability to predict glyco‐ligand binding. The framework expands the tools available to glycoscientists and engineers. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
We review the syntheses, optical properties, and biological applications of cadmium selenide (CdSe) and cadmium selenide–zinc sulfide (CdSe–ZnS) quantum dots (QDs) and gold (Au) and silver (Ag) nanoparticles (NPs). Specifically, we selected the syntheses of QDs and Au and Ag NPs in aqueous and organic phases, size- and shape-dependent photoluminescence (PL) of QDs and plasmon of metal NPs, and their bioimaging applications. The PL properties of QDs are discussed with reference to their band gap structure and various electronic transitions, relations of PL and photoactivated PL with surface defects, and blinking of single QDs. Optical properties of Ag and Au NPs are discussed with reference to their size- and shape-dependent surface plasmon bands, electron dynamics and relaxation, and surface-enhanced Raman scattering (SERS). The bioimaging applications are discussed with reference to in vitro and in vivo imaging of live cells, and in vivo imaging of cancers, tumor vasculature, and lymph nodes. Other aspects of the review are in vivo deep tissue imaging, multiphoton excitation, NIR fluorescence and SERS imaging, and toxic effects of NPs and their clearance from the body. Figure Semiconductor quantum dots and metal nanoparticles have extensive applications, e.g., in vitro and in vivo bioimaging Tamitake Itoh and Abdulaziz Anas contributed equally to this article.  相似文献   

16.
Natural 1,5-di-, 1,4,5-tri-, and 1,4,5,8-tetrahydroxyanthraquinones and their anions and metal complexes were shown to be equilibrium mixtures of tautomers and conformers using quantum-chemical and correlation analysis of elecronic absorption spectra. Solvent effects, ionization, complexation, and the introduction and substitution of substituents were accompanied by shifts of tautomeric and conformational equilibria that determine the color of the compounds. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 224–229, May–June, 2006.  相似文献   

17.
This biomaterials overview for selecting polymers for medical devices focuses on polymer materials, properties and performance. An improved understanding of thermoplastics and thermoset properties is accomplished by thermal analysis for device applications. The medical applications and requirements as well as the oxidative and mechanical stability of currently used polymers in devices are discussed. The tools used to aid the ranking of the thermoplastics and thermosets are differential scanning calorimetry (DSC), thermogravimetry (TG), thermal mechanical analysis (TMA) and dynamic mechanical analysis (DMA) as well as a number of key ASTM polymer tests. This paper will spotlight the thermal and mechanical characterization of the bio-compatible polymers e.g., olefins, nylon, polyacetals, polyvinyl chloride and polyesters.  相似文献   

18.
 用溶胶-凝胶法制备了超细Fe-Al-P-O催化剂,并用DTA-TG,BET,TEM,XRD,TPR和IR等技术研究了催化剂的微观组成和结构及其晶格氧活性,探讨了催化剂的制备工艺,考察了溶胶-凝胶的形成机理、凝胶干燥及焙烧条件对催化剂微观组成和结构的影响规律.结果表明,Fe-Al-P-O催化剂呈非晶态,是具有均匀分布的超细粒子(10nm),其比表面积大(238m2/g),晶格氧活性高.FePO4和AlPO4间隔分布在催化剂表面,形成Lewis碱位(P=O,P-O-Fe)和Lewis酸位(Fe3+,Al3+).  相似文献   

19.
There is widespread use of telecommunication and microwave technology in modern society, and raised the electromagnetic interference (EMI) issue to alarming situation due to apprehensive demand and growth of 5G technology undesirably disturbing the human health. The two dimensional (2D) materials including graphene and MXenes are already been used for variety of electronic devices due to their exceptional electrical, mechanical, optical, chemical, and thermal properties. MXene is composed of metal carbides, in which mainly metals are the building blocks for dielectrics, semiconductors, or semimetals. However, the strong interfaces with electromagnetic waves (EM) are variable from terahertz (THz) to gigahertz (GHz) frequency levels and are widely used in EMI and Microwave absorption (MA) for mobile networks and communication technologies. The use of different organic materials with metal, organic, inorganic fillers, polymers nanocomposite and MXene as a novel material has been studied to address the recent advancement and challenges in the microwave absorption mechanism of 2D materials and their nanocomposites. In this concern, various techniques and materials has been reported for the improvement of shielding effectiveness (SE), and theoretical aspects of EMI shielding performance, as well stability of 2D materials particularly MXene, graphene and its nanocomposites. Consequently, various materials including polymers, conducting polymers, and metal–organic frameworks (MOF) have also been discussed by introducing various strategies for improved MA and control of EMI shieling. Here in this comprehensive review, we summarized the recent developments on material synthesis and fabrication of MXene based nanocomposites for EMI shielding and MA. This research work is a comprehensive review majorly focuses on the fundamentals of EMI/MA.  The recent developments and challenges of the MXene and graphene based various structures with different polymeric composites are described in a broader perspective.  相似文献   

20.
A QuEChERS (quick, easy, cheap, effective, rugged, and safe) method for the determination of benazolin-ethyl and quizalofop-p-ethyl in rape and soil by high-performance liquid chromatography-tandem mass spectrometry has been developed in this study. The residue and dissipation of benazolin-ethyl and quizalofop-p-ethyl in rape and soil were determined with the developed method. The half-lives of benazolin-ethyl in rape straw and soil were 3.7–5.1 days and 14.3–26.3 days, respectively. The half-lives of quizalofop-p-ethyl in rape straw and soil were 5.0-6.1 days and 0.3–9.7 days, respectively. The residue of benazolin-ethyl and quizalofop-p-ethyl in rapeseed and soil were below the detection limit (i.e., 0.5?mg?kg?1, the maximum residue level of European Union for quizalofop-p-ethyl).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号