首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferraro TA 《Talanta》1968,15(9):923-930
An ion-exchange method was applied to the analysis of synthetic mixtures representing various niobium-base alloys. The alloying elements which were separated and determined include vanadium, zirconium, hafnium, titanium, molybdenum, tungsten and tantalum. Mixtures containing zirconium or hafnium, tungsten, tantalum and niobium were separated by means of a single short column. Coupled columns were employed for the resolution of mixtures containing vanadium, zirconium or titanium, molybdenum, tungsten and niobium. The separation procedures and the methods employed for the determination of the alloying elements in their separate fractions are described.  相似文献   

2.
The simultaneous extraction of niobium, zirconium and tantalum from hydrofluoric ncid solutions with oxygen-containing solvents has been studied. When solvents of relatively high dielectric constant- tributyl phosphate. methyl isobutyl ketone and cyclohexanone -are used. the extration of micro amounts of niobium and zirconium is suppressed by the presence of macro amounts of tantalum. This suppression of extraction in the presence of tantalum is also evident with solvents of low polarity, such as diethyl and diisopropyl others, but with these solvents, zirconium is co-extracted with niobium. One of the principal causes of these mutual influences of metals is dissociation and association of the compounds extracted in the organic phase. The formation of mixed ion associated in the extract allows co-extraction of one metal with another. Conversely, the dissociation of complex acids in the organic phase causes suppression of extraction of micro elements by the common ion effect.  相似文献   

3.
Further work on the polarographic reduction of molybdenum(VI), niobium(V) and titanium(IV) in base electrolytes containing organic acids is reported. A base electrolyte of 0.5 M citric acid-0.025 M sulphuric acid-0.05 M thorium nitrate proved suitable for the determination of molybdenum and titanium in the presence of niobium, tantalum, tungsten and zirconium. A direct polarographic method using this base electrolyte is described for the determination of molybdenum in a niobium base alloy.  相似文献   

4.
Non-destructive analysis of samples of niobium and tantalum has been achieved by activation with 10-MeV protons and γ-ray spectrometry. Niobium and molybdenum have been detected and determined in tantalum, as well as molybdenum and tungsten in niobium. Upper limits of concentration have been established for over thirty other undetected elements; most of these limits are below the p.p.m. level, and some reach the p.p.b. level.  相似文献   

5.
A rapid control determination of niobium in 50% zirconium/50% niobium master-alloy is described; it is a direct spectrophotometric procedure, based on the reaction of niobium ions with hydrogen peroxide in concentrated sulphuric acid. The procedure is suitable for the examination of zirconium alloys containing niobium in the range 0.1 to about 60%. At least 1% of chromium, cobalt, copper, manganese, nickel or tantalum, does not interfere. Interference due to optical absorption by the peroxy-complexes of titanium, tungsten, molybdenum and vanadium is not significant in the determination of niobium above about 1%, provided that these metals are not in excess of about 0.5%, 0.25%, 0.1% and 0.02%, respectively. To compensate for optical absorption due to iron(III), a solution of the sample, not treated with peroxide, is used.  相似文献   

6.
D. H. Wilkins 《Talanta》1959,2(4):355-360
An anion-exchange method of separating the constituents in high temperature alloys has been devised. Nine elements including titanium, tungsten, molybdenum, niobium and tantalum are determined in an alloy on a single sample weight. Any combination of the elements mentioned above may be determined in steels and high temperature alloys with a simple ion-exchange scheme suitable for routine analysis.  相似文献   

7.
Reaction of hydride phases of zirconium intermetallic compounds with molecular nitrogen wasstudied at 293, 973 K, nitrogen pressure of 10 MPa. At 293 K, hydride-nitride phases crystallizing inthe structural types of the initial hydride phases are formed in all cases, whereas at 973 K finely dispersedheterophase mixtures of zirconium, molybdenum, and vanadium nitrides with 3d transition metals or mixtures of zirconium nitride with vanadium, molybdenum, chromium, and manganese nitrides are formed.  相似文献   

8.
In the recommended procedure the zirconium is first precipitated from solution as the insoluble barium fluozirconate. After separation, the precipitate is dissolved in a mixture of nitric and boric acids and the zirconium is then precipitated as its hydroxide. This precipitate is separated, dissolved in hydrochloric acid and this solution is evaporated to fumes of perchloric acid to remove completely fluoride ions. The zirconium content is then determined volumetrically by adding a slight excess of a standard solution of ethylenediaminetetra-acetic acid and back titrating with a standard iron solution at pH 2.3 using potassium benzohydroxamate as indicator and the photometric technique for end-point detection. This method is applicable to the determination of milligram amounts of zirconium in fluoride-containing nitric or hydrochloric acid solutions provided that the concentration of these acids is below 3N. It is also suitable for the determination of zirconium in the presence of any of the following elements - uranium, titanium, niobium, tantalum, molybdenum, tungsten, lead, iron, copper and tin.  相似文献   

9.
Spectrochemical procedures have been developed to determine impurities in americium and curium samples. The simultaneous separation of many impurity elements from the base material (americium and curium) is carried out with extraction and extraction-chromatographic methods using di(2-ethyl hexyl phosphoric acid (D2EHPA).

It is shown that part of the elements (alkalis, alkaline earths, silicon, tungsten, tantalum and other elements) are separated with extraction or sorption of americium and curium; the other part (rare earths, titanium, zirconium, niobium, molybdenum) with the Talspeak process.

Two fractions in the extraction chromatography and three fractions in the extraction separation of americium and curium, containing impurities, are analyzed separately by a.c. or d.c. arc spectrography. To increase the sensitivity of the spectrographic analysis and accelerate the burn-up of impurities from the crater of the carbon electrode bismuth fluoride and sodium chloride were used as chemically active substances. The extraction of impurities from weighed quantities of americium and curium samples of 5–10 mg permits the lower limit of determined impurity concentrations to be extended to 1 × 10−4–5 × 10−3% m/m.  相似文献   


10.
A new method for the determination of traces of niobium in tantalum metal has been developed. The niobium is separated from tantalum by solvent extraction with hexone from hydrofluoric acid-hydrochloric acid solution, and from molybdenum and tungsten by solvent extraction with oxine-chloroform solution from ammoniacal citrate solution. The niobium is then determined by the spectrophotometric thiocyanate method.  相似文献   

11.
Instrumental activation analysis is used for the determination of carbon in the refractory metals zirconium, niobium, tantalum and tungsten, based on the 12C(d, n)13N reaction induced by 5–7-MeV deuterons. 13N(t12 = 10.0 min) is detected via its annihilation radiation. The contribution of 13N to the annihilation activity is separated from that of other β+-emitters by decay-curve analysis. The method is free of nuclear interferences. The possible spectrometric interferences are discussed. Concentrations of 65.1, 24.8, 1.04 and <0.015 μg C g-1, with relative standard deviations of 4.0, 5.9 and 14.0%, were obtained for zirconium, niobium, tantalum and tungsten, respectively.  相似文献   

12.
Recent developments in the metallurgy of niobium, tantalum and zirconium have necessitated provision of analytical procedures for determining niobium and tantalum in the presence of each other and in the presence of zirconium. For this purpose, absorptioinetric procedures based on the formation of yellow coloured complexes, between pyrogallol and niobium or tantalum, have been critically examined. Direct absorptiometric procedures are described, which are suitable for determining niobium or tantalum in the range 2 to 7%; when either of these metals exceeds 7%, differential absorptiometric procedures are recommended. Corrections must lie made for absorption due to the presence of other metals which form complexes with pyrogallol. In tlie determination of niobium or tantalum up to 5%, the precision of the method is about ±0.05%. About 12 determinations can be made in a day, by one analyst.  相似文献   

13.
A detailed study of the benzoylphenylhydroxylamine (BPHA)-chloroform-hydrochloric acid solvent extraction system with 52 elements is described with emphasis placed on extraction of the easily hydrolyzed transition metals from strong hydrochloric acid. From this study, a separation procedure for hafnium, niobium, tantalum, titanium, vanadium, and zirconium from uranium was developed, and procedures are given for the microanalysis of niobium and zirconium in uranium. Niobium and zirconium are separated from uranium by extraction into BPHA-chloroform from 10-N HCl.The separated elements are then measured colorimetrically as the niobium-4-(2-pyridylazo)resorcinol and zirconium-arsenazo III complexes. The limit of detection is 1 μg/g U.  相似文献   

14.
Metal chalcogenides and metal chalcogenide halides are distinguished by their structural diversity and by their very different physical properties. Therefore, the synthesis of novel compounds from this class is always a rewarding goal for the preparatively oriented solid-state chemist. Over the past few years, many syntheses and structural investigations have stimulated the field. The emphasis of the research has been placed on selenium-rich and tellurium-rich compounds, which are characterized by directed covalent bonds between the chalcogen atoms. Compounds with novel chalcogen polycations have also become accessible during the past few years by reacting the chalcogen elements with transition metal halides, or from chemical vapor deposition in the sense of chemical transport reactions. In these compounds, tellurium differs from its lighter homologues by a pronounced tendency towards greater covalence. This article attmepts to provide an overview of new developments in the field of compounds with chalcogen polycations and of metal chalcogenide halides, with an emphasis on compounds containing molybdenum and tungsten as the transition metals and tellurium as the chalcogen.  相似文献   

15.
Titanium-based alloy with low-toxic metals such as niobium, tantalum and zirconium (TiNbTaZr) was manufactured. The primary weight percentages of elements used for fusion were: titanium, 65%; niobium, 20%, tantalum, 10%; and zirconium, 5%. The TiNbTaZr alloy had a yield strength of about 550 MPa, a tensile strength of about 700 MPa, and a Young’s modulus of about 50 GPa, that is, it was comparable with Nitinol. A primary study of the biocompatibility of the TiNbTaZr alloy using the SH-SY5Y cells showed that the alloy did not have significant short-term toxicicity towards the cells incubated on the alloy surface. The number of non-viable cells was 2.5 times lower on the TiNbTaZr alloy than on Nitinol. The biocompatibility of TiNbTaZr was more pronounced than that of the Nitinol reference sample.  相似文献   

16.
Ferraro TA 《Talanta》1969,16(6):669-679
Schemes for the separation of two or more of the elements vanadium, zirconium and/or titanium, molybdenum and tungsten from each other and from relatively large amounts of niobium have been developed, a strongly basic anion-exchange resin being used. Interference from niobium is avoided by using hydrofluoric acid to elute vanadium, zirconium, titanium and molybdenum. The application of coupled columns to improve the efficiency of separation of multicomponent mixtures is demonstrated. The use of an "interval" equation defining the volume interval between successively eluted solutes is proposed for calculating the column length required for a particular separation. This equation is especially useful for determining the extent to which a column must be lengthened when overlapping occurs because of high column loading.  相似文献   

17.
Donaldson EM 《Talanta》1970,17(7):583-591
A method for determining up to 0.15% of vanadium in high-purity niobium and tantalum metals, cast iron, steel, non-ferrous alloys and silicates is described. The proposed method is based on the extraction of a red vanadium(V)-N-benzoyl-N-phenylhydroxylamine complex into chloroform from a sulphuric-hydrofluoric acid medium containing excess of ammonium persulphate as oxidant. The molar absorptivity of the complex is 428 l.mole(-1).mm(-5) at 475 nm, the wavelength of maximum absorption. Interference from chromium(VI) and cerium(IV) is eliminated by reduction with iron(II). Common ions, including large amounts of titanium, zirconium, molybdenum and tungsten, do not interfere.  相似文献   

18.
Donaldson EM 《Talanta》1981,28(11):825-831
A simple and reliable method for determining approximately 0.0001% or more of total boron in iron and low- and high-alloy steels is described. After the sample is decomposed at <70 degrees in the presence of hydrogen peroxide and potassium hydrogen fluoride, the insoluble material is filtered off and ultimately fused with sodium carbonate. The cooled melt is dissolved in dilute hydrochloric acid and the solution is combined with the main solution. Fluoride is subsequently complexed with zirconium and boron is separated from iron and other elements by extraction as borate from 1M sulphuric acid medium into chloroform containing 2-ethyl-1,3-hexanediol. Boron, in a 1-ml portion of the extract, is ultimately determined spectrophotometrically at 550 nm in an ethanol medium, after formation of the curcumin rosocyanin complex in a glacial acetic acid-concentrated sulphuric acid medium. Acid-soluble and acid-insoluble boron can also be determined. Common ions, including large amounts of manganese, chromium, vanadium, titanium, molybdenum, tungsten, niobium and tantalum do not interfere.  相似文献   

19.
Donaldson EM 《Talanta》1983,30(7):497-504
A method for determining ~ 0.001% or more of tantalum in ores and mill products is described. After fusion of the sample with sodium carbonate, the cooled melt is dissolved in dilute sulphuric-hydrofluoric acid mixture and tantalum is separated from niobium and other matrix elements by methyl isobutyl ketone extraction of its fluoride from 1M hydrofluoric acid-0.5M sulphuric acid. The extract is washed with a hydrofluoric-sulphuric acid solution of the same composition to remove co-extracted niobium, and tantalum is stripped with dilute hydrogen peroxide. This solution is acidified with sulphuric and hydrofluoric acids and evaporated to dryness, and the residue is dissolved in oxalic-hydrofluoric acid solution. Tantalum is ultimately determined spectrophotometrically after extraction of the blue hexafluorotantalate-Brilliant Green ion-association complex into benzene from a 0.05M sulphuric acid-0.5M hydrofluoric acid-0.2M oxalic acid medium. The apparent molar absorptivity of the complex is 1.19 x 10(4) l.mole(-1).mm(-1) at 640 nm, the wavelength of maximum absorption. Common ions, including iron, aluminium, manganese, zirconium, titanium, molybdenum, tungsten, vanadium, tin, arsenic and antimony, do not interfere. Results obtained by this method are compared with those obtained by an X-ray fluorescence method.  相似文献   

20.
Specific features of the distribution of rare elements and radionuclides in processing of the bad- deleyite concentrate by various methods to obtain pure zirconium compounds and in its chemical purification were studied. The products in which they are concentrated can be regarded as concentrates of niobium(V), tantalum(V), scandium(III), and radionuclides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号