首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deposition of small amount of Pt is reported onto polycrystalline Au from H2PtCl6-containing solutions. Spontaneous deposition, yielding about 5% of a full-packed monolayer, has been found at the steady-state open circuit potential. Formation of a somewhat more dense, but still a partial monolayer could be observed at potentials between the steady-state open circuit potential and that of the onset of bulk deposition. A specific difference of monolayer and bulk deposition is that Pt surface area levels off with time and keeps increasing for the former and latter types of deposition, respectively. Pt monolayers with quite high coverages can be formed in a rather narrow, 20?C30?mV potential region only. The surface areas of Pt and of the Pt-free Au have been simultaneously measured as cyclic voltammetry peak charges. From these measurements, the site requirement of the Pt atoms was determined to be around four; that is, each Pt atom blocks the oxidation of about four underlying/neighbouring Au atoms, implying their distant positions. Based on the results, Au surfaces coated with monoatomic Pt layers of quite high coverages can be prepared.  相似文献   

2.
Au/Pt core shell nanoparticles (NPs) have been prepared via a layer‐by‐layer growth of Pt layers on Au NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(II) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air‐saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as‐prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring‐disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four‐electron reduction on the as‐prepared modified electrode with 5 Pt layers and first charge transfer is the rate‐determining step.  相似文献   

3.
The roles of surface and bulk for electrocatalysis have been investigated. Bi ad-atoms enhance a platinum electrode to a great extent for HCOOH oxidation. In order to examine whether bulk platinum atoms are necessary for the electrocatalysis, monolayer or submonolayer amounts of platinum atoms were made to deposit on a gold electrode which is quite inactive for the oxidation. The deposition of a complete monolayer of platinum atoms on a gold electrode makes the electrode as active as a platinum electrode itself. Bi ad-atoms enhance this electrode to the same extent as they do a platinum electrode for the oxidation. Thus surface atoms, Pt and Bi atoms, having no bulk atoms on a quite inactive electrode work effectively for the electrocatalysis, the platinum atoms for the adsorption of the main reactant and the Bi atoms for blocking of the sites against the formation of poison. It is the adsorptive property of the surface that controls the electrocatalytic activity.  相似文献   

4.
The formation of PtRu surface alloys by deposition of submonolayer Pt films on a Ru(0001) substrate and subsequent annealing to about 1350 K and the distribution of the Pt atoms in the surface layer were investigated by scanning tunneling microscopy. Quantitative statistical analysis reveals (i) negligible losses of Pt into subsurface regions up to coverages close below 1 monolayer, (ii) a homogeneous distribution of the Pt atoms over the surface, and (iii) the absence of a distinct long-range or short-range order in the surface layer. In addition, the density of specific adsorption ensembles is analyzed as a function of Pt surface content. Possible conclusions on the process for surface alloy formation are discussed. The results are compared with the properties of PtRu bulk alloys and the findings in previous adsorption studies on similar surface alloys (H. Rauscher, T. Hager, T. Diemant, H. Hoster, F. Bautier de Mongeot and R. J. Behm, Surf. Sci., 2007, 601, 4608; T. Diemant, H Rauscher and R. J. Behm, J. Phys. Chem. C, in press).  相似文献   

5.
We have studied the interaction of vapor-deposited Al, Cu, Ag, and Au atoms on a methoxy-terminated self-assembled monolayer (SAM) of HS(CH(2))(16)OCH(3) on polycrystalline Au[111]. Time-of-flight secondary ion mass spectrometry, infrared reflection spectroscopy, and X-ray photoelectron spectroscopy measurements at increasing coverages of metal show that for Cu and Ag deposition at all coverages the metal atoms continuously partition into competitive pathways: penetration through the SAM to the S/substrate interface and solvation-like interaction with the -OCH(3) terminal groups. Deposited Au atoms, however, undergo only continuous penetration, even at high coverages, leaving the SAM "floating" on the Au surface. These results contrast with earlier investigations of Al deposition on a methyl-terminated SAM where metal atom penetration to the Au/S interface ceases abruptly after a approximately 1:1 Al/Au layer has been attained. These observations are interpreted in terms of a thermally activated penetration mechanism involving dynamic formation of diffusion channels in the SAM via hopping of alkanethiolate-metal (RSM-) moieties across the surface. Using supporting quantum chemical calculations, we rationalized the results in terms of the relative heights of the hopping barriers, RSAl > RSAg, RSCu > RSAu, and the magnitudes of the metal-OCH(3) solvation energies.  相似文献   

6.
The growth of Pt nanofilms on well-defined Au(111) electrode surfaces, using electrochemical atomic layer epitaxy (EC-ALE), is described here. EC-ALE is a deposition method based on surface-limited reactions. This report describes the first use of surface-limited redox replacement reactions (SLR(3)) in an EC-ALE cycle to form atomically ordered metal nanofilms. The SLR(3) consisted of the underpotential deposition (UPD) of a copper atomic layer, subsequently replaced by Pt at open circuit, in a Pt cation solution. This SLR(3) was then used a cycle, repeated to grow thicker Pt films. Deposits were studied using a combination of electrochemistry (EC), in-situ scanning tunneling microscopy (STM) using an electrochemical flow cell, and ultrahigh vacuum (UHV) surface studies combined with electrochemistry (UHV-EC). A single redox replacement of upd Cu from a PtCl(4)(2-) solution yielded an incomplete monolayer, though no preferential deposition was observed at step edges. Use of an iodine adlayer, as a surfactant, facilitated the growth of uniformed films. In-situ STM images revealed ordered Au(111)-(square root 3 x square root 3)R30 degrees-iodine structure, with areas partially distorted by Pt nanoislands. After the second application, an ordered Moiré pattern was observed with a spacing consistent with the lattice mismatch between a Pt monolayer and the Au(111) substrate. After application of three or more cycles, a new adlattice, a (3 x 3)-iodine structure, was observed, previously observed for I atoms adsorbed on Pt(111). In addition, five atom adsorbed Pt-I complexes randomly decorated the surface and showed some mobility. These pinwheels, planar PtI(4) complexes, and the ordered (3 x 3)-iodine layer all appeared stable during rinsing with blank solution, free of I(-) and the Pt complex (PtCl(4)(2-)).  相似文献   

7.
Nanostructured Pd thin films are directly formed on polycrystalline Pt and Au substrates in the absence of hard and soft templates by using a cyclic potential sweep technique, which is confirmed by both SEM observation and their unusual cyclic voltammetric characteristics in H2SO4 solution. Interestingly, the bimetallic electrodes obtained after the deposition of ultrathin Pd films onto Pt and Au substrates display much higher catalytic activity towards the electro-oxidation of methanol than the bulk Pt electrode. Besides, it is found that the foreign metal substrate has great influence on the electro-catalytic behavior of the Pd films.  相似文献   

8.
An aluminum electrode modified with gold atoms was introduced as a novel electrode. Gold atoms were deposited both chemically and electrochemically onto the aluminum electrode to make an aluminum/gold (Al/Au) modified electrode (ME). The experimental results showed that the Al/Au modified electrode prepared by chemical deposition, exhibits much more current than the electrochemical deposition method. The electrochemical behavior of the Al/Au modified electrode was studied by cyclic voltammometry. This modified electrode showed two pairs of peaks, a1c1 and a2c2, with surface‐confined characteristics in a 0.5 M phosphate buffer. The dependence of Epa of the second peak (a2c2) on pH shows a Nernestian behavior with a slope of 55 mV per unit pH. The effect of different supporting electrolytes, solution's pH and different scan rates on electrochemical behavior of Al/Au modified electrode was studied. Au deposited electrochemically on a Pt electrode (Pt/Au) was also used as another modified electrode. A comparative study of electrochemical behavior of bare Al, Pt/Au and Al/Au modified electrodes showed that both Pt/Au and Al/Au electrodes have the ability of electrocatalytic oxidation of S2O32?, but the electrocatalytic oxidation on the latter was better than the former. The kinetics of the catalytic reaction was investigated by using cyclic voltammetry and chronoamperometry techniques. The average value of the rate constant for the catalytic reaction and the diffusion coefficient were evaluated by means of chronoamperometry technique.  相似文献   

9.
The self-assembly of octanethiol (OT) on the surface of a polycrystalline gold electrode in aqueous and aqueous ethanol thiol-containing (1 × 10–4 М) 0.1 М NaClO4 solutions was studied. The blocking properties and electrochemical stability of monolayer OT films were studied by chronopotentiometry during OT adsorption under the open circuit conditions (chronoamperometry at a fixed potential) combined with cyclic voltammetry for modified Au/OT electrodes. It was found from the change in the rate of electrochemical reactions in the range of monolayer stability potentials that in aqueous media, compact insulating OT monolayer films formed at a open circuit potential within ~100 s, and the shift of the adsorption potential toward negative values (to–0.6 V) allowed a considerable decrease in the monolayer self-assembly time. The potential shift toward higher negative values (–0.9 V) leads to a removal of OT from the electrode surface during the reductive desorption, with a multipeak current signal recorded on the voltammograms. A transition from aqueous to aqueous ethanol solutions accelerated the formation of an insulating OT monolayer (≈6 s) and led to a change in the shape of the desorption current peak, whose value was almost independent of the ОТ accumulation time and potential.  相似文献   

10.
It has been demonstrated that Pd2+ ions can be reduced onto Pt surface in the presence of organic materials but only at a very low Cl ion activity. Unlike rhenium deposition, Pd deposition may proceed after the formation of an adsorbed Pd monolayer and bulk deposits are formed on the Pt surface.  相似文献   

11.
The adsorption of methanol on flat Au (100) surface with different coverages (θ = 1.0, 0.5 and 0.25 monolayer (ML)) is studied using density functional theory. Among the three sites (top, bridge and hollow) and coverages investigated in the present work, no adsorption is stable for θ = 1.0 ML. The most energetically preferred site of adsorption for CH3OH is found to be the hollow site for coverages of 0.25 ML and 0.50 ML. We also find that for all adsorption sites, an increase in CH3OH coverage triggers a decrease in the adsorption energy. The geometric parameters, local density of states and work function changes are analysed in detail. The coadsorption of methoxy and hydrogen has also investigated. In addition, the dissociation of methanol on Au(100) has been studied, and an activation energy was found to be 1.72 eV. This result compare with existing data in the literature for Au(111) surface. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
第一性原理计算研究发现由于二维TiC 单原子层具有高的比表面积与大量的暴露在表面的Ti 原子,其是一种非常有潜力的储氢材料. 计算结果显示H2可以在二维TiC 单原子层表面进行物理吸附与化学吸附. 其中化学吸附能为每个氢分子0.36 eV,物理吸附能是每个氢分子0.09 eV. 覆盖度为1和1/4层(ML)时,H2分子在二维TiC 单原子层表面的离解势垒分别为1.12 和0.33 eV. 因此,除了物理吸附与化学吸附,TiC 表面还存在H单原子吸附. 最大的H2储存率可以达到7.69%(质量分数). 其中,离解的H原子、化学吸附的H2、物理吸附的H2的储存率分别为1.54%、3.07%、3.07%. 符合Kubas吸附特征的储存率为3.07%. 化学吸附能随覆盖度的变化非常小,这有利于H2分子的吸附与释放.  相似文献   

13.
 The specific adsorption of 36Cl-labelled Cl ions and 35S-labelled HSO4 ions was studied in 1 mol dm−3 HClO4 supporting electrolyte in the presence of Cd2+ ions at a gold support over a wide potential range corresponding to electrodeposition, alloy formation, underpotential deposition of Cd species and existence of an adatom-free surface. The distinct sections in the potential dependence of the adsorption of anions together with the potential versus time curves obtained under open circuit conditions reflect the changes in the state of the electrode surface, the dissolution of the bulk Cd phase and the slow elimination of Cd species from the Cd/Au alloy. Received: 16 March 1999 / Accepted: 5 May 1999  相似文献   

14.
Voltammetric responses of Ni, Cu, Ag, Pt and glassy carbon (GC) electrodes in triethylamine-tris(hydrogen fluoride) medium in the anodic as well cathodic potential region were investigated. AAS as well as SEM measurements were also made to ascertain the dissolution rate and surface transformation due to fluoride film formation on the electrode surfaces. On Ni, bulk NiF2 film growth occurs only around 4.0 V following a thin NiF2 monolayer formation around 0 V. The NiF2 film shows very little solubility in the medium. Monolayer and bulk CuF2 phases are formed quite close to each other on Cu during anodic polarization. The anodically formed CuF2 dissolves to the extent of 12% in this medium. AgF formation follows a different mechanism during the first and subsequent anodic sweeps. The effect of MeCN as well as water addition on the solubility and stability of these fluoride films are also reported. Glassy carbon and Pt electrodes are relatively inert in this medium. Anodic voltammetric responses for other reactive species could be observed only on Pt and GC electrodes. On the cathodic side, all the electrodes show inert behaviour. Electrochemical reduction of PhNO2, for example, could be observed on all the electrodes. Electronic Publication  相似文献   

15.
Hydrogen adsorption on and absorption into Pd alloys with other noble metals was studied in acidic solutions (0.5 M H2SO4) using cyclic voltammetry. Correlations were found between the potentials of adsorbed/absorbed hydrogen oxidation peaks and surface/bulk compositions of Pd–Rh alloys. The potential of the α–β-phase transition depends linearly on Pd bulk content in Pd–Au, Pd–Rh, Pd–Pt and Pd–Pt–Rh alloys. The obtained relationships can be utilized for the determination of the composition of homogeneous Pd-noble alloys from hydrogen electrosorption experiments.  相似文献   

16.
常彦龙  苏旭  时雪钊  王春明 《化学学报》2007,65(22):2527-2532
将多孔硅浸入含贵金属盐的HF溶液20 s, 制备了Ag, Au, Pd和Pt的沉积层. AFM形貌显示, 这4种贵金属都能在多孔硅上直接沉积, 但Pt的沉积量比其他3种少. SEM图及能谱(Energy dispersive X-ray spectrometer, EDS)分析显示, 沉积层优先生长在孔边上, 孔边上的沉积量约是孔底的4.6倍. 电化学方法分析显示, Pd和Pt, Ag和Au的沉积层分别具有类似的开路电位和交流阻抗特性, 其中Pd层的溶出电流比其他3种大1个数量级, 而阻抗比其他小1个数量级, 说明Pd层与硅基底的结合程度好, 结合界面导电性好.  相似文献   

17.
The adsorption of iodine and iodide anions on a Pt/Pt electrode (0.5 M H2SO4 as a supporting solution) is compared using potentiodynamic and galvanostatic charging curves, transients of the current and open-circuit potential (OCP), and analytical measurements. Variations in the charge and OCP during the adsorption obey relationships derived for strong adsorption of neutral species and ions on a hydrogen electrode with the formation of irreversibly adsorbed atoms. The main product of the I2 and I chemisorption in acid solutions is adsorbed iodine atoms. However, adsorption of iodine occurs in noticeable amounts and above a monolayer in the form of species that undergo electrodesorption during a cathodic polarization to potentials of the beginning of hydrogen adsorption. In the presence of a monolayer of adsorbed iodine atoms, potential of the zero total charge of a Pt/Pt electrode is in the oxygen adsorption region.  相似文献   

18.
Pb upd on polycrystalline Au and on Au coated with Se atomic layer was investigated by potentiodynamic electrochemical impedance spectroscopy. Faradaic and double layer responses have disclosed two distinct stages in Pb upd on Au: a partly irreversible stage, attributed to formation and growth of Pb 2D islands, and a reversible phase transition in the final stage of a monolayer deposition. The completion of a continuous monolayer formation in the potential scan was signalised by a sharp minimum in double layer pseudocapacitance Qdl. Pb2+ reduction, which was monitored concurrently by parameters of Faradaic response, continued shortly after the Qdl minimum and showed sharp maxima of adsorption capacitance and inverse Warburg constant at 40 mV below Qdl minimum. This was explained by surface free energy minimisation that forced continuous atomic layer formation with inclusion of some lead cations into Pb monolayer. The two-stage Pb upd transformed into a single-stage strongly irreversible upd as a result of Se atomic underlayer deposition on Au.  相似文献   

19.
Adsorption structures formed upon vapor deposition of the natural amino acid L-cysteine onto the (111) surface of gold have been investigated by scanning tunneling microscopy under ultrahigh vacuum conditions. Following deposition at room temperature and at cysteine coverages well below saturation of the first monolayer, we found coexistence of unordered molecular islands and extended domains of a highly ordered molecular overlayer of quadratic symmetry. As the coverage was increased, a number of other structures with local hexagonal order emerged and became dominant. Neither of the room temperature, as-deposited, ordered structures showed any fixed rotational relationship to the underlying gold substrate, suggesting a comparatively weak and nonspecific molecule-substrate interaction. Annealing of the cysteine-covered substrate to 380 K lead to marked changes in the observed adsorption structures. At low coverages, the unordered islands developed internal order and their presence started to perturb the appearance of the surrounding Au(111) herringbone reconstruction. At coverages beyond saturation of the first monolayer, annealing led to development of a ( radical3 x radical3)R30 degrees superstructure accompanied by the formation of characteristic monatomically deep etch pits, i.e., the behavior typically observed for alkanethiol self-assembled monolayers on Au(111). The data thus show that as-deposited and thermally annealed cysteine adsorption structures are quite different and suggest that thermal activation is required before vacuum deposited cysteine becomes covalently bound to single crystalline Au(111).  相似文献   

20.
Underpotential deposition (UPD) of Cu on an Au electrode followed by redox replacement reaction (RRR) of CuUPD with a Pt source (H2PtCl6 or K2PtCl4) yielded Au-supported Pt adlayers (for short, Pt(CuUPD-Pt4+)n/Au for H2PtCl6, or Pt(CuUPD-Pt2+)n/Au for K2PtCl4, where n denotes the number of UPD-redox replacement cycles). The electrochemical quartz crystal microbalance (EQCM) technique was used for the first time to quantitatively study the fabricated electrodes and estimate their mass-normalized specific electrocatalytic activity (SECA) for methanol oxidation in alkaline solution. In comparison with Pt(CuUPD-Pt2+)n/Au, Pt(CuUPD-Pt4+)n/Au exhibited a higher electrocatalytic activity, and the maximum SECA was obtained to be as high as 35.7 mA μg?1 at Pt(CuUPD-Pt4+)3/Au. The layer-by-layer architecture of Pt atoms on Au is briefly discussed based on the EQCM-revealed redox replacement efficiency, and the calculated distribution percentages of bare Au sites agree with the experimental results deduced from the charge under the AuO x -reduction peaks. The EQCM is highly recommended as an efficient technique to quantitatively examine various electrode-supported catalyst adlayers, and the highly efficient catalyst adlayers of noble metals are promising in electrocatalysis relevant to biological, energy and environmental sciences and technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号