首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   5篇
化学   4篇
物理学   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2001年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
第一性原理计算研究发现由于二维TiC单原子层具有高的比表面积与大量的暴露在表面的Ti原子,其是一种非常有潜力的储氢材料.计算结果显示H2可以在二维TiC单原子层表面进行物理吸附与化学吸附.其中化学吸附能为每个氢分子0.36 eV,物理吸附能是每个氢分子0.09 eV.覆盖度为1和1/4层(ML)时,H2分子在二维TiC单原子层表面的离解势垒分别为1.12和0.33 eV.因此,除了物理吸附与化学吸附,TiC表面还存在H单原子吸附.最大的H2储存率可以达到7.69%(质量分数).其中,离解的H原子、化学吸附的H2、物理吸附的H2的储存率分别为1.54%、3.07%、3.07%.符合Kubas吸附特征的储存率为3.07%.化学吸附能随覆盖度的变化非常小,这有利于H2分子的吸附与释放.  相似文献   
2.
利用基于密度泛函理论的第一性原理方法,Ni As与Pb O型Fe X(X=S,Se,Te)结构的稳定性与电子特征得到了研究.计算结果显示Fe的内聚能与X-Fe元素之间的相互作用是影响Fe X结构稳定性的重要因素.当X原子半径较小、电负性较大时(X=S),Fe X趋向于形成Fe-X相互作用较强、密度较大的Ni As型结构;当X原子半径较大、电负性较小时(X=Se,Te),Fe X趋向于形成Fe-Fe相互作用较强、密度较小的Pb O型结构.此外,压强使得Pb O型Fe X结构的稳定性降低.当压强分别大于5、9 GPa时,Fe Te、Fe Se趋向于形成Ni As型结构.Pb O型Fe Se中Fe原子周围的电子密度随压强的增大而增大.  相似文献   
3.
较高的比表面积与稳定性使得二维Ti2C与Ti3C2结构在贵金属催化剂载体、锂离子电池、储氢材料等领域具有重要的应用前景. 研究Ti2C、Ti3C2的表面吸附活性有助于认识其表面特征. 第一性原理计算研究显示:Ti2C与Ti3C2对O、OH、F具有较强的吸附活性. 通过比较Ti2C、Ti3C2、Ti(001)、TiC(001)的表面电子结构, 我们发现Ti2C与Ti3C2较强的表面吸附活性来自于表面Ti 原子未极化的3d轨道. 这使得Ti2C、Ti3C2表面通常覆盖有O、F、OH. 吸附了O、OH基团的Ti2C与Ti3C2结构(Ti2CO2-2x(OH)2x、Ti3C2O2-2x(OH)2x)对Au原子的吸附能随OH比例的增大而增大.  相似文献   
4.
第一性原理计算研究发现由于二维TiC单原子层具有高的比表面积与大量的暴露在表面的Ti原子,其是一种非常有潜力的储氢材料.计算结果显示H2可以在二维TiC单原子层表面进行物理吸附与化学吸附.其中化学吸附能为每个氢分子0.36 eV,物理吸附能是每个氢分子0.09 eV.覆盖度为1和1/4层(ML)时,H2分子在二维TiC单原子层表面的离解势垒分别为1.12和0.33 eV.因此,除了物理吸附与化学吸附,TiC表面还存在H单原子吸附.最大的H2储存率可以达到7.69%(质量分数).其中,离解的H原子、化学吸附的H2、物理吸附的H2的储存率分别为1.54%、3.07%、3.07%.符合Kubas吸附特征的储存率为3.07%.化学吸附能随覆盖度的变化非常小,这有利于H2分子的吸附与释放.  相似文献   
5.
第一性原理计算研究发现由于二维TiC 单原子层具有高的比表面积与大量的暴露在表面的Ti 原子,其是一种非常有潜力的储氢材料. 计算结果显示H2可以在二维TiC 单原子层表面进行物理吸附与化学吸附. 其中化学吸附能为每个氢分子0.36 eV,物理吸附能是每个氢分子0.09 eV. 覆盖度为1和1/4层(ML)时,H2分子在二维TiC 单原子层表面的离解势垒分别为1.12 和0.33 eV. 因此,除了物理吸附与化学吸附,TiC 表面还存在H单原子吸附. 最大的H2储存率可以达到7.69%(质量分数). 其中,离解的H原子、化学吸附的H2、物理吸附的H2的储存率分别为1.54%、3.07%、3.07%. 符合Kubas吸附特征的储存率为3.07%. 化学吸附能随覆盖度的变化非常小,这有利于H2分子的吸附与释放.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号