首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
紫外光照处理对TiO2膜光伏性能的影响   总被引:3,自引:0,他引:3  
近年来人们利用纳米晶TiO2电极取代普通的TiO2电极[1],使其太阳能电池的光电转换效率得到很大提高.纳米晶TiO2电极具有大量表面态,在化学上表现为Ti3+或Ti—OH,对于光生电荷的分离过程和迁移过程有重要影响.这些表面化学结构的变化可能会导致TiO2的光伏性能的变化.1997年Fujishima等[2]用紫外光照射TiO2膜使它具有超亲水的性质,结构分析表明,超亲水的原因在于光照使TiO2膜的表面形成Ti—OH[3].因此,在光照处理的同时可能会导致TiO2的光伏性的变化.本文对紫外光照处理TiO2膜的光伏性能进行了研究,并结合光诱导TiO2的亲水性变化对光伏性能变化的原因进行了讨论.  相似文献   

2.
Ce3+掺杂对纳米TiO2/SiO2镀膜玻璃性能的影响   总被引:3,自引:1,他引:3  
李玲 《中国稀土学报》2005,23(2):190-194
在TiO2/SiO2溶胶中按不同比例掺杂Ce3+得到复合溶胶,将溶胶喷涂在浮法玻璃原片上,105~300 ℃烘干得到镀有纳米TiO2膜的透明玻璃.AFM图像表明 掺杂Ce3+的TiO2/SiO2镀膜玻璃表面的颗粒小于没有掺杂Ce3+的TiO2/SiO2镀膜玻璃表面颗粒.掺杂Ce3+与TiO2 摩尔比为0.01∶1时,镀膜玻璃可见光透射比为85.3%,紫外线透射比39.7%、可见光反射比7.3%、太阳光直接透射比83.5%、太阳光直接反射比6.6%; 水接触角θ为0°; 在可见光照射下,分解甲基橙的时间为48 h; 膜表面电阻率为5.9×107 Ω·cm.在400~700 ℃对镀膜玻璃进行高温处理,其光学性能明显提高,可见光透射比为91.7%,紫外线透射比39.1%、可见光反射比6.4%、太阳光直接透射比92.0%、太阳光直接反射比5.9%; θ角为0°,亲水性明显提高; 在可见光照射下,甲基橙分解时间为28 h; 膜表面电阻率为5.5×107 Ω·cm,玻璃在可见光条件下就具有自清洁能力.  相似文献   

3.
研究以紫外光光化学反应为基础的在聚甲基丙烯酸甲酯(PMMA)表面区域选择性金属化的方法. 通过对无臭氧紫外光、紫外光+臭氧(UV/O3)、臭氧对PMMA表面亲水化改性效果的对比, 发现仅有UV/O3可有效地使PMMA表面亲水. 表面红外光谱表明, UV/O3对PMMA表面协同作用的结果是在辐照区域生成了羧基等含氧活性基团. 以此含氧活性基团为基础, 经过胺化、氯金酸阴离子交换、NaBH4还原等表面反应, 在UV/O3作用区域形成化学镀所必须的金纳米催化中心, 再将PMMA浸入镀金、镀铜等化学镀浴中, 即可实现PMMA表面的区域金属化. 以打印的菲林片为原始掩膜, 该方法分辨率可达50 μm或更小. 以该法制备了金和铜的薄膜微电极、金膜微电热器等金属微器件, 并表征了它们的物理化学性能.  相似文献   

4.
以玻碳电极为基础电极,先用静电自组装方法将带负电荷的四磺酸基苯基铁卟啉和带正电荷的含重氮盐基团的重氮树脂在电极表面进行层-层组装,然后在紫外光的照射下,使铁卟啉的磺酸基与重氮树脂的重氮基引发交联反应,使层与层之间的离子键变成共价键,从而使铁卟啉在电极表面形成稳定、有序、分子水平的层-层构筑.用UV-Vis和IR光谱表征了组装过程,用CV方法研究了该电极的电化学性能.结果表明,该电极不但具有非常优异的稳定性,而且对H2O2的电还原反应也表现出很好的催化活性.  相似文献   

5.
紫外光照下纳米TiO2电极的电化学行为   总被引:9,自引:0,他引:9  
崔晓莉  江志裕 《物理化学学报》2002,18(11):1014-1017
通过电沉积方法制备了纳米TiO2薄膜电极,应用循环伏安和交流阻抗技术研究了TiO2电极在253.7 nm的紫外光照射下的电化学行为.结果表明, TiO2薄膜电极的循环伏安图在+0.15 V处出现新的氧化峰,交流阻抗谱的半圆明显减小,电极的开路电位在有光和无光的情况下呈现规律变化.实验证实在紫外光照射下电极表面有新物种Ti3+生成,但光生Ti3+不稳定.  相似文献   

6.
利用自组装技术首次将含有偶氮苯单体的肽核酸寡聚体(NH2-TNT4,N-PNAs)与DNA的杂交体(N-PNAs/DNA)定在金电极表面。以[Fe(CN)6]^4-/3-氧化还原电对为探针,利用循环伏安法、示差脉冲伏安法和电化学阻抗谱初步研究了N-PNAs修饰的金电极以及与DNA形成的杂交体在紫外光照射前后体系的电化学行为。结果表明,伴随着紫外光照射时间的增加,氧化还原电流减小,电子在电极表面的传输能力下降,据此可以推断PNAs/DNA杂交体的构象发生了转变,证明可以通过紫外光的照射来调节PNAs/DNA杂交体的结构。  相似文献   

7.
共价键合四磺酸基铁酞菁有序多层膜电极   总被引:2,自引:1,他引:1  
以玻碳电极为基础电极,经静电自组装方法将带负电荷的四磺酸基铁酞菁与带正电荷的含重氮基团的重氮树脂在电极表面进行层-层自组装,然后经紫外光照射,使铁酞菁的磺酸基与重氮树脂的重氮基发生交联反应,使层与层之间的离子键转为共价键,从而使铁酞菁在电极表面形成稳定、有序且处于分子水平的层-层构筑.用UV-Vis和IR光谱表征了组装过程,用CV方法研究了该电极的电化学性能及其对三氯乙酸的电催化还原.同时用计时电流法测定了三氯乙酸通过该类膜的扩散系数.  相似文献   

8.
采用一步电沉积的方法在导电玻璃基底上制备了具有粗糙表面的氧 化锌薄膜.用SEM和XPS表征了薄膜的表面形貌和化学组成,用接触角测定仪 测定接触角以评估薄膜的浸润性.结果显示,薄膜表面布满了无序生长的花瓣状 的微晶,形成疏松的结构.薄膜与水的接触角为133.2°,呈现了疏水的性质.通 过紫外光照射的方法可以使其由疏水性薄膜转化为亲水性薄膜,接触角降低到 4.8°。  相似文献   

9.
紫外光谱研究表明,AZ正性光胶当厚度大于10μm时,在200~285nm的紫外光区几乎不透光。本研究据此研制了一种以固化后的AZ光胶做挡光层、石英玻璃做底板的紫外光刻掩膜。应用AZ光胶掩膜对聚碳酸酯(PC)表面进行以低压汞灯(主要辐射254nm紫外光)为光源的选择性光化学改性,在光照区域形成化学镀所需的催化中心后,采用化学镀技术,在PC毛细管电泳芯片上制备安培检测用的集成化金微电极。本掩膜材料简单,制作方便,无须洁净实验室和贵重的设备,成本低廉。  相似文献   

10.
在具有催化还原活性的金电极表面,以水合肼为还原剂,在pH10.5酒石酸钾钠溶液中,通过化学镀方法,选择性地在金电极表面沉积了单层结构的铜膜。用开路电位时间谱技术(Op~t)、循环伏安法(CV)和微分脉冲伏安法(DPV)表征了该溶液还原法对铜进行选择性富集的机理和效果。证明在多种金属离子共存的复杂溶液体系中,可以避免其它离子的干扰,使铜选择性地富集到金电极表面。化学镀浴中富集到金电极表面的单层铜膜溶出电流与Cu2+的浓度在3×10-6~1×10-4mol/L范围内呈线性关系。该法已用于矿样中铜的还原富集、分离和测定,分析结果与电感耦合等离子体发射光谱法(ICP/AES)作了比较,结果满意。  相似文献   

11.
Synthesis of a novel, high‐performance blue to transmissive switching electrochromic material is described. The polymer (P1) was prepared by both electrochemical ( P1E ) and chemical ( P1C ) means from the corresponding monomer. The electrochemically synthesized polymer ( P1E ) revealed 64% optical contrast change (on ITO) in the visible region and very fast switching times of 0.32 s (coloration) and 0.90 s (bleaching). On the other hand, the chemically synthesized, solution processable polymer ( P1C ) also showed a high optical contrast value (49%, on ITO) with very fast switching times of 0.86 s for coloration and 0.57 s for bleaching. These high optical contrast values coupled with fast switching times place these materials along with high‐performance blue to transmissive electrochromic polymers. Significantly, these improved characteristics were achieved by side chain engineering of a known, inferior blue to transmissive polymer, PBEBT. Towards fabrication of flexible electrochromic devices, the performance of P1C was also tested on silver nanowire network electrodes. Even though the full potential of the material could not be demonstrated, a good optical contrast of 24% was achieved using these electrodes. Under the same potential range allowed by silver nanowire network electrodes, P1C on ITO showed an optical contrast of 30%. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1680–1686  相似文献   

12.
The development of lithium-ion batteries with simplified assembling steps and fast charge capability is crucial for current battery applications. In this study, we propose a simple in-situ strategy for the construction of high-dispersive cobalt oxide (CoO) nanoneedle arrays, which grow vertically on a copper foam substrate. It is demonstrated that this nanoneedle CoO electrodes provide abundant electrochemical surface area. The resulting CoO arrays directly act as binder-free anodes in lithium-ion batteries with the copper foam functioning as the current collector. The highly-dispersed feature of the nanoneedle arrays enhances the effectiveness of active materials, leading to outstanding rate capability and superior long-term cycling stability. These impressive electrochemical properties are attributed to the highly-dispersed self-standing nanoarrays, the advantages of binder-free constituent, and the high exposed surface area of the copper foam substrate compared to copper foil, which enrich active surface area and facilitate charge transfer. The proposed approach to prepare binder-free lithium-ion battery anodes streamlines the electrode fabrication steps and holds significant promise for the future development of the battery industry.  相似文献   

13.
Processing of large area, indium tin oxide (ITO) free electrochromic (EC) devices has been carried out using roll‐to‐roll (R2R) processing. By use of very fine high‐conductive silver grids with a hexagonal structure, it is possible to achieve good transparency of the electrode covered substrates and when used in EC devices switching times are similar to corresponding ITO devices. This is obtained without the uneven switching of larger areas, which is generally observed when using ITO because of its high‐sheet resistance. The silver electrode structures for 18 × 18 cm2 devices can be processed at high speed (10 m/min) on PET by flexographic printing and the EC polymer ECP‐Magenta as well as a minimal color changing polymer MCCP by slot‐die coating, showing the potential for fast fabrication of large volumes of low‐priced flexible EC devices by use of R2R processing techniques. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

14.
The high surface areas of nanostructured electrodes can provide for significantly enhanced surface loadings of electroactive materials. The fabrication and characterization of nanoporous gold (np-Au) substrates as electrodes for bioelectrochemical applications is described. Robust np-Au electrodes were prepared by sputtering a gold-silver alloy onto a glass support and subsequent dealloying of the silver component. Alloy layers were prepared with either a uniform or nonuniform distribution of silver and, post dealloying, showed clear differences in morphology on characterization with scanning electron microscopy. Redox reactions under kinetic control, in particular measurement of the charge required to strip a gold oxide layer, provided the most accurate measurements of the total electrochemically addressable electrode surface area, A(real). Values of A(real) up to 28 times that of the geometric electrode surface area, A(geo), were obtained. For diffusion-controlled reactions, overlapping diffusion zones between adjacent nanopores established limiting semi-infinite linear diffusion fields where the maximum current density was dependent on A(geo). The importance of measuring the surface area available for the immobilization was determined using the redox protein, cyt c. The area accessible to modification by a biological macromolecule, A(macro), such as cyt c was reduced by up to 40% compared to A(real), demonstrating that the confines of some nanopores were inaccessible to large macromolecules due to steric hindrances. Preliminary studies on the preparation of np-Au electrodes modified with osmium redox polymer hydrogels and Myrothecium verrucaria bilirubin oxidase (MvBOD) as a biocathode were performed; current densities of 500 μA cm(-2) were obtained in unstirred solutions.  相似文献   

15.
Galvanic replacement represents a highly significant process for the fabrication of bimetallic materials, but to date its application has been limited to either modification of large area metal surfaces or nanoparticles in solution. Here, the localised surface modification of copper and silver substrates with gold through the galvanic replacement process is reported. This was achieved by generation of a localised flux of AuCl4? ions from a gold ultramicroelectrode tip which interacts with the unbiased substrate of interest. The extent of modification with gold can be controlled through the tip–substrate distance and electrolysis time.  相似文献   

16.
The fabrication of the Screen-Printed Electrode (SPE) was performed using the graphite ink to print the working (WE) and counter electrodes (CE), and silver/silver chloride path as reference electrode (RE). All the electrodes are printed in a paper substrate using screen-printing technique. The resulting SPE is characterized using scanning electron microscopy, showing all the ink layer, and subsequently optimized. The paper sample presented the cellulose fibers entanglement, extremely rough, with highly porous network. Then the graphite ink was deposited and the surface became flat, thinner and very smooth. When the silver ink was painted on top of the graphite ink, the spherical silver particles, ranged from 2–3.5 μm in size, were observed. And finally, the silver ink was covered with a AgCl layer and the particle size becomes larger with an irregular sphere-like phase. The images showed that the layers appear to be homogeneously distributed with good coverage. Then fabrication process was optimized concerning type of paper, the sanding process, the hydrophobic barrier, the electrode design and size. In summary, the optimized values included using the previously sanded matte paper with a mineral spirit layer. The design and size of the electrode were also tested to achieve the best electrochemical performance (design 3 with 3.5 cm). The final SPE was a miniaturized and flexible paper-based electrochemical electrode. In order to evaluate the electrical properties, the ohmic resistance of each ink was tested using a multimeter and the obtained values were 2.18 kΩ for the graphite ink, 2.27 Ω for the silver ink and 38.33 kΩ for the silver/silver chloride ink. That can indicate the good conductivity of each ink used in the fabrication of the electrode and the correct deposition of Ag/AgCl. Finally, the electrode was used to measure the electrochemical response of K4[Fe(CN)6] in different concentrations. Then a calibration curve was obtained from the voltammograms and a linearity was observed between the current and concentration in the range of 0.50–2.00 mM. That indicates that the SPE has potential to be used as a voltammetric electrode.  相似文献   

17.
Hierarchical-structured copper sulfide nanoneedles were grown on multi-walled carbon nanotube backbone (denoted as CuS@CNT) as electrodes for supercapacitors via a facile template-based hydrothermal conversion approach and further by simply impregnating sulfur into CuS@CNT (S@CuS@CNT) as electrodes for Li-S batteries. The electrochemical measurements showed that the resultant CuS@CNT composite electrodes deliver outstanding electrochemical performance with a specific capacitance up to 566.4 F g?1 and cyclic stability of 94.5 % of its initial capacitance after 5000 cycles at a current density of 1 A g?1. A synergistic effect arising from the unique hierarchical structure was responsible for the electrode performance, including a large surface area of 49.3 m2 g?1 and active CuS ultrafine nanoneedles firmly bonded to the highly conductive carbon nanotube (CNT) backbone. When used as an electrode material for Li-S batteries, the S@CuS@CNT (S content 59 wt%) exhibited satisfying electrochemical performance. The S@CuS@CNT electrode showed that coulombic efficiency was close to 100 % and capacity maintained more than 500 mA h g?1 with progressive cycling up to more than 100 cycles even at a high current density. This strategy of stabilizing S with a small amount of copper sulfide nanoneedles can be a very promising method to prepare free-standing cathode material for high-performance Li-S batteries. The fabrication strategy presented here is low cost, facile, and scalable, which can be considered as a promising material for large-scale energy storage device. In particular, the use of CNT as backbone for the growth of active materials presents many potential merits owing to its lightweight, biodegradable, and stretchable characteristics.  相似文献   

18.
We describe a facile and expedient approach for the fabrication of arrays of microelectrodes on smooth substrates. A sequence of print-and-peel procedures allowed for the microfabrication of capacitance microsensors using office equipment and relatively simple wet chemistry. Microfluidic assemblies with reversibly adhered elastomer components allowed for the transfer of patterns of metallic silver, deposited via Tollens' reaction, onto the substrate surfaces. Electroplating of the silver patterns produced an array of micrometer-thick copper electrodes. Capacitance sensors were assembled by placing nonlithographically fabricated flow chambers over the microelectrode arrays. Triangular-waveform current-voltage (I/V) measurements showed a linear correlation between the capacitance of the print-and-peel fabricated devices and the dielectric constant of the samples injected into their flow chambers.  相似文献   

19.
In this work, a silver/silver chloride ink is fabricated using two steps. First the silver ink is prepare using silver, nail polish and acetone. Then the silver ink is painted in a paper substrate and a silver chloride layer is deposited using a bleach solution. The result is the silver/silver chloride conductive ink. The silver ink is cheap ($2.49/g), well-dispersive and very easy to fabricate. The materials were characterized by SEM and XRD. The Ag ink showed the formation of a continuous network throughout the silver ink film with fewer agglomeration. The effective chlorination process was also observed in the Ag/AgCl characterization. Since the Ag/AgCl substrate will be used as a quasi-reference electrode, it is important to investigate the electrical properties. The Ag ink showed an average ohmic resistance of 2.27 Ω. The addition of the AgCl layer decreases the conductivity, as expected. In summary, the Ag/Ag/Cl ink developed is simple, well-dispersed, cheap and with good conductivity. Therefore, it can be used as a conductive ink in the fabrication of quasi-reference electrodes.  相似文献   

20.
Single-use sensors, incorporating a three-electrode configuration (graphite carbon-working electrode; carbon-counter electrode and silver/silver chloride-reference electrode), have been fabricated on a polyester substrate using low cost screen-printing (thick-film) technology. These electrodes coupled with constant current stripping chronopotentiometry (CCSCP), has provided a convenient screening tool for on-site detection of trace levels of copper. Modification of the graphite carbon surface based on in situ deposition of mercury film has been carried out. By appropriate choice of supporting medium and applied constant stripping current, well-resolved and reproducible response for copper was obtained. The stripping response for copper following 2 min deposition was linear over the concentration range examined (10-2000 ppb) with detection limit of 6 ppb using 2 M hydrochloric acid (HCl). Successful applications of the sensing device to acetic-acid bioavailable fraction of a certified reference material (CRM 601, a lake sediment) and soil samples are demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号