首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 892 毫秒
1.
特选榨菜对铀污染土壤的修复评价   总被引:2,自引:0,他引:2  
本文通过两种不同的加铀方式,加入不同种类及浓度的螯合剂,以及土壤改良剂(有机肥、微生物肥料、腐殖酸、尿素)的方法,研究了不同因素对特选榨菜修复铀污染土壤的影响。结果表明:在pH=5时把UO_2(NO_3)_2·6H_2O溶液喷洒入土壤,使土壤中铀污染浓度为100 mg·kg~(-1)时,特选榨菜地上部铀富集的浓度最大可以达到1103.42 mg·kg~(-1),根部为1909.49 mg·kg~(-1),去除率为7.81%;上述含铀土壤放置2年后制备成模拟铀污染的土壤,进而栽种特选榨菜进行修复,在100 mg·kg~(-1)铀污染浓度下,植物上部铀富集浓度最大为295.83 mg·kg~(-1),根部为268.42 mg·kg~(-1),年去除率为2.52%。用Tessier五步连续提取法测定两次修复土壤中铀的形态,发现模拟铀污染土壤比铀喷洒于土壤中有效态的铀(交换态和碳酸盐结合态)要低52.7%;加入柠檬酸、苹果酸等螯合剂以及有机肥、微生物肥料、腐殖酸、尿素等土壤改良剂,在模拟铀污染土壤修复时发现有机肥会降低植物上部对铀的富集;而柠檬酸和微生物肥会增强植物上部对铀的富集。  相似文献   

2.
<正>茶叶中含有丰富的矿物质,既有铁、铜和锌等对人体有益的微量元素,也有铬、砷、镉、汞、铊、铅、铋、钍、铀等对人体有害的重金属元素。国家强制性标准GB 2762-2012《食品中污染物限量》对茶叶中铅提出了限量要求(不得超过5.0mg·kg~(-1));农业部强制性标准NY 659-2003《茶叶中铬、镉、汞、砷及氟化物限量》中规定铬不得超过5mg·kg~(-1)、镉不得超过1mg·kg~(-1)、汞不得超过0.3mg·kg~(-1)、砷  相似文献   

3.
0.500 0g柴油抗磨剂样品用10mL甲苯溶解,然后用甲苯定量至30g,采用电感耦合等离子体原子发射光谱法测定样品溶液中钠、钾、钙、镁、铁、钼、锌、磷、硼、硅、锡等11种微量元素。氧气流量为30mL·min~(-1),钠、钾、钙、镁、铁、钼、锌、磷、硼、硅、锡的分析谱线依次为588.957 0,766.444 0,393.386 0,279.512 1,259.913 0,202.016 7,213.815 8,214.915 7,249.713 5,251.613 4,189.917 7nm。在等离子体气体中加入氧气有效消除了积碳现象,以钇为内标元素。11种元素的线性范围均为0.05~10.0mg·L~(-1),检出限(3s)为0.001 2~0.086 1 mg·kg~(-1)。在1.000 mg·kg~(-1)浓度水平进行加标回收试验,回收率为95.7%~107%,测定值的相对标准偏差(n=6)为1.3%~4.7%。  相似文献   

4.
ICP-MS法测定土壤中稀土元素的消解条件研究   总被引:1,自引:0,他引:1  
本文采用"硝酸-氢氟酸-高氯酸-硫酸"的湿法消解体系,优化了各种酸的用量和消解条件,以103Rh、185Re为内标元素,采用He碰撞模式消除多原子离子对待测元素的干扰,建立了土壤中15种稀土元素ICP-MS检测的湿法消解及分析方法。在优化条件下,不同类型国家土壤标准样品中15种稀土元素的检测结果的回收率为82.3%~113%,相对标准偏差为1.5%~8.7%,方法检出限0.001~0.015mg·kg~(-1),方法测定下限0.004~0.060mg·kg~(-1),此方法可用于多种类型土壤中稀土元素的ICP-MS检测,具有普遍适用性。  相似文献   

5.
采用顶空-气相色谱法测定土壤中甲醇的含量。顶空平衡温度为80℃,顶空平衡时间为15min。用DB-WAX石英毛细管色谱柱(30m×0.53mm,1.00μm)分离,氢火焰离子化检测器检测。甲醇的质量分数在0.791~197 mg·kg~(-1)内与其对应的峰面积呈线性关系,检出限(3.14s)为0.37mg·kg~(-1)。以空白样品为基体制得加标样品(39.5mg·kg~(-1)),测定值的相对标准偏差(n=7)为2.7%。在7.91,79.1,158mg·kg~(-1)等3个浓度水平进行加标回收试验,回收率为99.4%~103%。  相似文献   

6.
先用3~4mol·L~(-1)过氧化氢溶液6mL将样品(0.100 0~0.200 0g)预消解2h,再按程序升温微波消解,冷却,加入7mol·L~(-1)硝酸溶液2mL,按程序升温重复消解一次,用水定重至10.0g,离心后取上清液,用电感耦合等离子体质谱法测定14种无机元素的含量。各元素的检出限(3s)在0.002 0~0.63mg·kg~(-1)之间。按此方法分析了土壤标准样品,测得结果与认定值一致。用主成分分析法得出镍、钒、锌和镉等为土壤的特征性元素,其规律性可作为土壤样品的指纹图谱。特征元素与样品中有机质含量的相关性分析表明,二者关联性不大。  相似文献   

7.
连续流动注射法测定土壤和植物中全磷   总被引:2,自引:0,他引:2  
应用AA3型连续流动分析仪测定了土壤和植物中全磷.结果表明:对于采用高氯酸-硫酸消解的土壤样品以及硫酸-过氧化氢消解的植物样品,在测定时调节反应混合液的酸度使其在显色的适宜范围内,磷的质量浓度在6 mg·L-1(土壤)和7.5 mg·L-1(植物)以内呈线性,相关系数分别为0.999 2(土壤)和0.999 6(植物);加标回收率98.5%~100.5%,相对标准偏差小于2%,检出限分别为0.010 mg·L-1(土壤)和0.013 mg·L-1(植物).  相似文献   

8.
测定土壤中铍、锌、钼、铊、钛、锑等6种元素以硝酸-氢氟酸-高氯酸混合酸为消解体系,采用全自动消解法进行消解;测定土壤中钒、锰、钴、镍、铜、镉、钡、铅、铬等9种元素以硝酸-氢氟酸-盐酸混合酸为消解体系,采用微波消解法进行消解。以氩为内标元素校正土壤基体的雾化效率及电离效率。电感耦合等离子体原子发射光谱法(ICP-AES)采用多向观测模式,结合多重谱线拟合技术(MSF)校正光谱干扰,测定环境土壤中上述15种元素的含量,检出限为0.1~3.7 mg·kg~(-1)。按上述方法测定标准样品GSS~(-1)0和GSS~(-1)3,各元素的测定值与认定值吻合,相对标准偏差(n=11)为0.15%~2.6%。以吉林市某河岸土壤为实际测定样品,各元素的测定值与电感耦合等离子体质谱法(ICP-MS)的测定值一致,相对标准偏差(n=11)为1.6%~4.5%。  相似文献   

9.
为探讨南方离子型稀土矿区马尾松地上部分各器官稀土元素的分布与富集特征,采集福建省长汀县濯田镇马尾松下的土壤样品和地上部分各器官(树皮、树干、树枝和树叶)样品,测定其稀土元素。结果表明:马尾松下的土壤稀土元素含量平均值为275.15 mg·kg~(-1),轻重稀土元素分异明显, Ce元素富集明显, Eu元素相对亏损;马尾松地上部分各器官稀土元素含量普遍较低, LREE高于HREE,轻重稀土元素分异。马尾松地上部分各器官稀土元素球粒陨石分布模式中, Ce元素和Eu元素明显正异常,马尾松树干、树叶重稀土元素标准化后明显波动分布,呈锯齿状,马尾松树皮和树枝波动幅度小;其δCe(δEu)均大于1, Ce和Eu元素明显富集。马尾松地上部分各器官稀土元素的吸收系数均较小,该地区稀土元素由土壤到植物的迁移程度低,马尾松地上部分各器官对稀土元素的富集能力弱,但其生物量和提取稀土元素的能力不容忽视,可尝试将植物提取技术运用于该地区的稀土净化。  相似文献   

10.
采用气相色谱-质谱法快速测定从食品接触用塑料中迁移至水、4%(体积分数,下同)乙酸溶液、20%(体积分数,下同)乙醇溶液、50%乙醇溶液、异辛烷和橄榄油等6种食品模拟物中2,2,4-三甲基-1,3-戊二醇双异丁酸酯的含量。在气相色谱分离中采用DB-5MS色谱柱(30m×0.25mm,0.25μm),在质谱分析中采用选择离子监测模式。食品模拟物为水、4%乙酸溶液、20%乙醇溶液和50%乙醇溶液时,萃取溶剂为正己烷,萃取次数为1,萃取时间为10min;食品模拟物为异辛烷时无需萃取;食品模拟物为橄榄油时,萃取溶剂为甲醇,萃取次数为3,萃取时间为10min。TXIB的质量浓度在0.03~1.00mg·L~(-1)(食品模拟物为橄榄油:0.10~2.00mg·kg~(-1))内与其对应的峰面积呈线性关系,检出限(3S/N)为0.01mg·kg~(-1)(食品模拟物为橄榄油:0.03mg·kg~(-1)),测定下限(10S/N)为0.03mg·kg~(-1)(食品模拟物为橄榄油:0.10mg·kg~(-1))。以空白食品模拟物为基体进行加标回收试验,所得回收率为82.7%~110%,测定值的相对标准偏差(n=6)为2.3%~10%。  相似文献   

11.
荧光法测定土壤中硼   总被引:3,自引:0,他引:3  
研究了2-[(5′-羧基-2′-砷酸基苯)偶氮]-1,8-二羟基-3,6-萘二磺酸(5-CarAsA-1)与硼的荧光性能。硼与试剂形成1:2的强荧光配合物,其λ_(ex)/λ_(em)=240nm/381nm,B(Ⅲ)量在0~0.16mg·L~(-1)范围内呈良好线性关系。方法检出限为2μg·L~(-1)。建立了测定缴量硼的新方法。方法应用于土壤中微量硼的测定,结果满意。  相似文献   

12.
研究了新铜试剂-铜(Ⅰ)-四氟合硼([Cu(NCP)] -BF4-)离子缔合萃取-火焰原子吸收光谱法间接测定柑桔园土壤中的全硼。土壤样品经微波密闭酸消解后,被测元素B形成BF4-,它与[Cu(NCP)] 生成疏水性离子缔合物[Cu(NCP)] -BF4-,经甲基异丁基酮(MIBK)萃取,用火焰原子吸收光谱(FAAS)法测定MIBK相中的铜,借此间接测定土壤中全硼的含量。本法相对标准偏差(RSD)为2.1%~9.5%,回收率在94.6%~95.0%之间。  相似文献   

13.
采用固相萃取-液相色谱-串联质谱法测定动植物油脂中胆固醇的含量。样品在无水乙醇和氢氧化钾溶液中皂化,用石油醚-乙醚(1+1)混合液提取,经硅胶固相萃取柱净化。以Zorbox SB C_(18)色谱柱为分离柱,以不同体积比的5mmol·L~(-1)乙酸铵溶液和乙腈-甲醇(1+1)溶液的混合液为流动相进行梯度洗脱,采用电喷雾正离子源和多反应监测模式检测。采用内标法定量,胆固醇的质量浓度在0.1~5.0mg·L~(-1)内与其对应的峰面积呈线性关系,胆固醇在植物油脂和动物油脂中的检出限(3S/N)分别为0.02,0.2mg·kg~(-1)。在0.5,1.0,5.0mg·kg~(-1)等3个浓度水平进行加标回收试验,回收率为85.2%~92.0%,测定值的相对标准偏差(n=6)为3.6%~9.4%。  相似文献   

14.
取糜类制品及其原料样品0.500 0g,用硝酸5mL和氢氟酸1mL于200℃微波消解20min,冷却至室温,用水定容至25.0mL。采用电感耦合等离子体质谱法测定样品溶液中二氧化钛含量。结果表明:钛的线性范围为10~200μg·L~(-1),检出限(3s)为0.06mg·kg~(-1);对样品进行加标回收试验,回收率在88.0%~93.2%之间,相对标准偏差(n=6)在1.0%~3.7%之间。按所提出的方法分析了42批次原料及100批次糜类制品,发现样品中二氧化钛平均值分别约为2.5mg·kg~(-1)和5.0mg·kg~(-1),有10%的糜类制品中二氧化钛测定值高于100mg·kg~(-1),存在超范围使用二氧化钛的风险。  相似文献   

15.
土壤样品经丙酮与正己烷以体积比1∶2组成的混合液提取,采用PSA/Silica复合填料玻璃柱净化,收集洗脱液,洗脱液旋蒸近干,加入正己烷,采用气相色谱-串联质谱法测定稀释液中16种邻苯二甲酸酯(PAEs)的含量。在气相色谱分离中采用DB-5MS石英毛细管色谱柱,在串联质谱分析中采用选择离子监测模式。测定2种邻苯二甲酸酯单酯代谢物(MPEs)时,洗脱液旋蒸近干后,在14%(质量分数)三氟化硼-甲醇溶液中于60℃衍生30min。16种PAEs的线性范围均为0.02~0.80mg·L~(-1),检出限(3S/N)为1.357μg·kg~(-1);2种MPEs的线性范围均为0.05~1.00mg·L~(-1),检出限(3S/N)为0.217μg·kg~(-1)。以空白土壤样品为基体进行加标回收试验,所得回收率为71.1%~105%,测定值的相对标准偏差(n=5)为0.10%~14%。  相似文献   

16.
恒温平台石墨炉原子吸收光谱法测定土壤中镉   总被引:4,自引:1,他引:3  
正常土壤中镉的含量为0.03~0.3mg·kg~(-1),一般不会超过1mg·kg~(-1)。镉和锌的化学性质相似,都会随水中CaCO_3的沉积而沉淀。所以在石灰岩和石灰岩发育的土壤中富含锌,也可能含有较多的镉。当土壤受到电镀、染料、电池等工厂的废弃物污染后,含镉量会异常地增高。如果土壤的pH值较高,并含有多量的碳酸钙则镉不易迁移;而在酸性土壤中镉的迁移性较强,危害也更大。土壤环境质量标准规定,一般农田、蔬菜地、果园、牧场等土壤,当pH值小于7.5时,含镉量不能超过0.30mg·kg~(-1)。 测定土壤中镉的一般过程是:先将样品消解,然后用萃取一火焰原子吸收法测定,操作较繁琐。Slavin W等提出的恒温平台石墨炉(STPF)技术是一项近乎无干扰的先进技术,它包括快速电子测量技术、使用装有L'vov平台的热解涂层石墨管、最大功率原子化、峰面积测量、准确的背景扣除、原子化阶段停气、使用基体改进剂等。本文将它应用于土壤中镉的测定,重现性和准确度均较理想。  相似文献   

17.
镉是剧毒物质,常通过土壤或水被农作物(特别是水稻等)吸收。世界各国对大米中镉含量均有严格限制,我国粮食卫生标准GB 2715—2005中镉的限量为0,2 mg·kg~(-1)。近年来,国家大米监督抽查结果显示,我国南方部分省份的大米镉含量超标,据调查环境污染是造成大米中镉超标的主要原因。本工作通过对2008年国家认监委能力验证计划《大米  相似文献   

18.
建立了田水、土壤、水稻植株、水稻稻壳和糙米中氰氟草酯及代谢产物氰氟草酸的残留分析方法。前处理方法利用乙腈为提取剂,N-丙基乙二胺(PSA)、石墨化碳黑(GCB)和C18为分散净化剂的QuEChERS方法,并利用超高效液相色谱-串联质谱(UPLC-MS/MS)在多反应离子监测模式(MRN)下进行检测,外标法定量。结果表明:氰氟草酯和氰氟草酸在0. 01~1. 0 mg·L~(-1)浓度范围内均具有良好的线性关系(R~2≥0. 997);在0. 05~1. 00 mg·kg~(-1)添加水平范围内平均回收率为70. 6%~105. 8%;相对标准偏差(RSD,n=5)为0. 3%~7. 9%;氰氟草酯和氰氟草酸的方法检出限(LOD)为0. 11和0. 16μg·kg~(-1);定量限为0. 37和0. 54μg·kg~(-1)。该方法分析速度快、灵敏度高、重现性好,适用于多种基质上氰氟草酯和氰氟草酸的快速检测和确证。  相似文献   

19.
样品经硝酸-氢氟酸-硫酸三酸消解后,以103 Rh为内标,采用电感耦合等离子体质谱法测定高岭土中的15种稀土元素。采用标准物质制备工作溶液绘制校正工作曲线消除质谱干扰,通过控制样品的稀释因子消除非质谱干扰。各元素的线性范围为0.20~200mg·kg~(-1),检出限在0.03~0.09 mg·kg~(-1)之间。方法用于分析岩石标准物质,测定值与认定值的相对误差在-6.7%~8.3%之间,相对标准偏差(n=5)在0.70%~5.9%之间。实际样品中15种稀土元素的测定值的相对标准偏差在3.8%~12%之间。  相似文献   

20.
建立了加速溶剂萃取(ASE)-凝胶渗透色谱法(GPC)净化-气相色谱-串联质谱法(GC-MS/MS)测定土壤中的7种农药(五氯硝基苯、多效唑、腐霉利、甲霜灵、醚菊酯、啶虫脒和咪鲜胺)残留量的分析方法。随机采集种植土壤样品,于35℃烘干压碎后过2 mm孔径筛;称取过筛后的土壤样品10 g于加速溶剂萃取池中,以体积比为1∶1的丙酮-正己烷混合液为萃取剂,采用ASE反复萃取3次;将收集到的萃取液全部转移至GPC净化瓶中,经GPC净化后氮吹至近干,残渣用1 mL正己烷溶解,0.45μm微孔滤膜过滤,滤液进GC-MS/MS仪,多反应监测(MRM)模式分析,外标法定量。结果显示:7种农药的质量浓度在0.04~4.0 mg·L~(-1)内与其峰面积呈线性关系,检出限(3S/N)为0.002~0.007 mg·kg~(-1);对空白样品进行3个浓度水平的加标回收试验,7种农药的回收率为88.9%~104%,测定值的相对标准偏差(n=6)均小于4.0%。方法用于实际样品分析,检出了腐霉利和啶虫脒,检出量分别为0.010,0.005 mg·kg~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号