首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 126 毫秒
1.
通过对Gemini表面活性剂12-s-12 (Et)(s=4, 6, 8, 10, 12)体系在乙醇/水混合溶剂中的表面张力曲线的测定, 对该体系的表面性质进行了研究. 发现随乙醇/水比例变化, Gemini各种表面化学性质, 如临界胶束浓度(cmc)、表面张力(γcmc)、饱和吸附量(Γmax)和最小分子占有面积(Amin)等的变化规律. 拓展了Gemini表面活性剂在混合溶剂中表面吸附的研究.  相似文献   

2.
短碳链醇/水混合溶剂中表面活性剂的表面性质   总被引:2,自引:0,他引:2  
李勇慧  黄建滨  王传忠  杨榕  李润锴 《化学学报》2001,59(12):2152-2157
对不同类型表面活性剂(阳离子型、阴离子型、非离子型、正负混合型)在短碳链醇/水混合溶剂中的表面物化性质进行了较为系统的研究,探讨了短碳链醇加入对体系Υcmc值和cmc值的影响。发现各类体系的Υcmc随短碳链醇加入的变化规律并非决定于表面活性剂类型而取决于该表面活性剂在水溶液中的饱和吸附量和Υcmc值的大小。  相似文献   

3.
10-十一烯酸衍生物混合体系有序溶液与聚集体研究   总被引:1,自引:1,他引:0  
对三甲基-[2-(10-十一烯酰氧乙基)]碘化铵CH2=CH(CH2)8COOCH2CH2N(CH3)3I和N,N-[2-(10-十一烯酰甲基牛磺酸钠)]CH2=CH(CH2)8CON(CH3)CH2CH2SO3Na的表面及聚集行为进行了研究。混合体系溶解度良好,在40cmc时仍为稳定胶团溶液。结合正规溶液理论计算了混合体系表面吸附层、胶团的组成及分子间作用参数。基于两亲分子几何结构及分子间相互作用原理对上述现象进行了合理解释,发现了少量长链脂肪醇促使正负离子表面活性剂混合胶团转化为囊泡的新现象。  相似文献   

4.
混合表面活性剂的表面活性及加溶能力   总被引:9,自引:0,他引:9  
阴阳离子混合表面活性剂具有很高的表面活性[1],但该类表面活性剂的浓度超过临界胶团浓度(cmc)以后,就将沉淀而失去表面活性[2].因此,对该类体系的研究,主要在cmc以下.曾作过许多努力,希望解决阴阳离子混合表面活性剂的沉淀(或分层)问题,但效果均不理想[3,4].直到最近,在这方面的研究才取得明显的进展,找到了在水溶液中,任何浓度和混合比之下,都不沉淀或分层的一类阴阳离子混合表面活性剂[4].本文在此基础上,研究了该类表面活性剂的表面活性及其对戊醇和乙烷的加溶,该方面的研究工作,在国内外尚属首次,这对…  相似文献   

5.
王腾芳  尚亚卓  彭昌军  刘洪来 《化学学报》2009,67(11):1159-1165
研究了离子液体型表面活性剂C12mimBr与阳离子表面活性剂Gemini 12-3-12, DTAB及阴离子表面活性剂SDS复配体系的性质, 并分别采用Rubingh-Margules模型和Rubingh-正规溶液模型计算了临界胶束浓度和混合胶团组成. 研究发现, 两表面活性剂分子结构的匹配性及带电头基之间的相互作用是影响混合溶液性质的主要因素. 对于分子结构差别较大的C12mimBr与Gemini 12-3-12的混合, 其行为远远偏离理想混合性质; 对疏水链长相同仅亲水头基不同的C12mimBr与DTAB则接近于理想混合; 而对C12mimBr+SDS的复配体系, 正、负电荷间强烈的相互吸引使得混合体系大大偏离理想行为. 计算发现, 两种理论模型得到的混合胶团组成基本一致, 但Rubingh-Margules模型预测的临界胶束浓度比Rubingh-正规溶液模型要好  相似文献   

6.
甲酰胺与正负离子表面活性剂有序溶液的研究   总被引:2,自引:0,他引:2  
对羧酸钠与烷基三甲基溴化铵1:1混合体系的研究表明:常温下各体系在不同比例甲酰胺(FA)/水混合溶剂中,表面张力随浓度变化均有明显的转折点,显示了混合体系中胶团的存在.实验中发现随混合溶剂中FA比例增加,各体系的临界胶团浓度(cmc)增大.在较高温度下发现在甲酰胺中亦存在着因胶团形成而产生的表面张力-浓度对数(γ-logc)曲线的转折点,利用相分离模型对体系胶团热力学参数进行了计算.并探讨了FA对正负离子表面活性剂囊泡的影响.  相似文献   

7.
混合阴、阳离子表面活性剂溶液中的分子相互作用和相分离   总被引:11,自引:1,他引:11  
混合阴、阳离子表面活性剂的表面活性比单一组份的表面活性高得多[1].多年来,该体系的界面化学性质得到了广泛的研究[1,2].但是,一旦该体系在水溶液中的浓度超过其临界胶团浓度(cmc)后,就将沉淀[3]或分层[2,4],从而失去其表面活性.后来发现卜,司,在某些情况下,阴、阳离子混合表面活性剂的沉淀现象有所改善;但一直不易找到在相当大浓度范围内仍不分层的阴、阳离子表面活性剂混合体系.本文较为简明、系统地讨论了阴、阳离子表面活性剂的相互作用与沉淀或分相的关系.这对于该体系的深入研究以及实际应用,具有积极的意义…  相似文献   

8.
测定了不同摩尔比的全氟辛酸钠(7CFNa)-十烷基硫酸钠(C_(10)SNa)混合水溶液(加NaCl,恒定离子强度μ=0.1m)的表面张力和界面张力(正庚烷-水溶液界面张力)。由表(界)面张力-浓度关系求出混合体系的表(界)面吸附和临界胶团浓度(cmc)。结果表明:(1)7CFNa和C_(10)SNa在μ=0.1m的溶液中,cmc相近,两者表面活性相近;但7CFNa降低水表面张力的能力较强,在cmc时的表面张力可低达~23mNm~(-1)。因此,在混合溶液的表面上,7CFNa的表面活性较高,优先吸附于表面。对于各种摩尔比的混合溶液,7CF~-在表面层中的比例皆大于在溶液内部的比例。(2)正庚烷-水溶液界面上的吸附与表面吸附截然不同。7CF~-在界面吸附层中的比例低于溶液内部,表明其吸附能力比C_(10)S~-为弱。这是由于界面一边的正庚烷与C_(10)SNa碳氢链之间的作用大于与7CFNa碳氟链之间的作用。亦即碳氟链与碳氢链“互憎”作用在界面上的表现。(3)在不同摩尔比的混合溶液中,各组分的cmc接近一恒值,进一步说明混合溶液中存在碳氟链与碳氢链间的互憎作用,以致两种表面活性剂在混合溶液中(有过量无机盐时)基本上各自形成胶团。  相似文献   

9.
杨望生  赵国玺 《化学学报》1985,43(8):705-711
本文研究了具有双烃链的正、负离子表面活性剂混合水溶液的表面和液相性质、。负离子表面活性剂是琥珀酸二己酯磺酸钠[简写为(C6)2SNa],正离子表面活性剂是氯化二正辛基羟乙基甲基铵[(C8)2NCl]和氯化辛基羟乙基二甲基铵[C8NCl]。为了增加复合物的溶解度,在铵基上引入了羟乙基。测定了表面张力-浓度关系,用GIBBS公式计算表面吸附量和吸附分子面积。结果表明,由于正、负表面活性离子之间的强烈相互作用,所研究的两种混合物体系的表面活性远高于单独的表面活性剂。在等摩尔混合和离子强度0.1mol/kg情况下,(C6)2SNa-(C8)2NCl体系的吸附层组成是对称的(摩尔比为1:1),且在临界胶团浓度(cmc)以上析出新相,表明此cmc实质上是复合物的溶解度;而(C6)2SNa-C8NCl体系的吸附层为不对称组成(摩尔比非1:1),在cmc以上可能形成相当大的胶团,两种体系混合溶液的起泡性有极大差异。  相似文献   

10.
研究了烷基苯磺酸盐Gemini表面活性剂Ia与非离子表面活性剂C10E6溶液混合胶团中分子间的相互作用. 通过表面张力法测定了Ia 和C10E6不同比例不同温度下的临界胶束浓度(cmc). 结果表明, 两种表面活性剂以任何比例复配的cmc比单一表面活性剂的cmc都低, 表现出良好的协同效应. 传统型非离子表面活性剂C10E6、Gemini表面活性剂Ia及混合物的cmc都随着温度升高而降低. 而且, 任何配比的混合胶团中两种表面活性剂分子间的相互作用参数β都是负值, 这说明两种表面活性剂在混合胶团中产生了相互吸引的作用. 混合表面活性剂体系的胶团聚集数比单一Ia的大, 但比单一C10E6的小. 向Gemini表面活性剂Ia胶束中加入非离子表面活性剂C10E6会使胶束的微观极性变小.  相似文献   

11.
朱永平  赵剑曦  游毅 《化学学报》2002,60(6):1001-1005
随着丙、丁、戊、已醇的加入,与季铵盐二聚表面活性剂C_(12)-2-C_(12)· 2Br组成了混合胶团,醇分子以烷烃链插入胶团中,羟基则位于胶团栅栏层处。这 减弱了表面活性剂离子头基间的静电排斥力,使临界胶团浓度(cmc)降低,同时使 胶团表面反离子解离度增大。随着醇分子的烷烃链增长,这种影响更为显著。  相似文献   

12.
The aqueous mixed system decyltrimethylammonium bromide (C(10)TAB)-hexadecyltrimethylammonium bromide (C(16)TAB) was studied by conductivity, ion-selective electrodes, surface tension, and fluorescence spectroscopy techniques. The mixture critical micelle concentration, cmc(*), aggregation number, N( *), and micelle molar conductivity, Lambda(M)(cmc), showed that the system aggregation is strongly nonideal. Both cmc(*) and N( *) results were analyzed with two different procedures: (i) the regular solution theory on mixed micelles or Rubingh's theory, and (ii) by the determination of the partial critical micelle concentration of the amphiphile component i in the presence of a constant concentration of the other amphiphile component, cmc(i)( *). The Rubingh procedure gives micelles richer in C(16)TAB than the overall mixtures, while procedure (ii) gives micelles having the same composition as in the complete surfactant mixture (alpha(C(10)TAB). Mixed micelles are larger than pure surfactant ones, with nonspherical shape. Using a literature model, the cause of the synergistic effect seems to be a reduction of the hydrocarbon/water contact at the micelle surface when mixed micelles form. Conductivity and ion-selective electrodes indicate that highly ionized premicelles form immediately before the cmc(*). The air/solution interface is strongly nonideal and much richer in C(16)TAB than the composition in the bulk. When micelles form there is a strong desorption from the air/solution interface because micelles are energetically favored when compared with the monolayer.  相似文献   

13.
Isothermal titration calorimetry (ITC) was used to determine the critical micelle concentration (cmc) and the thermodynamic parameters associated with the demicellization of sodium oleate (NaO) and mixed micelles composed of the bile salt (BS) sodium cholate (NaC) or sodium deoxycholate (NaDC), respectively, and NaO at a molar ratio of 5:2. The influence of the ionic strength (pure water and 0.1 M NaCl at pH 7.5) as well as that of the temperature (10-70 degrees C) were analyzed. For NaO, two cmc's were detected, indicating a two-step aggregation process, whereas only one cmc was observed for the two BSs. A single aggregation mechanism is also evident for the demicellization of mixed micelles (BS/NaO 5:2). Increasing the ionic strength induces the well-known decrease of the cmc. The cmc shows a minimum at room temperature. The cmc(mix) of the mixed micelles was analyzed using models assuming an ideal or nonideal mixing behavior of both detergents. The thermodynamic parameters describing the enthalpy (deltaHdemic), entropy (deltaSdemic), and Gibbs energy change (deltaGdemic), as well as the change in heat capacity (deltaCp,demic) for demicellization, were obtained from one ITC experiment. From the temperature dependence of deltaHdemic, the change of the hydrophobic surface area of the detergents from the micellar into the aqueous phase was derived. In all cases, the deltaCp,demic values are positive. In addition, the temperature dependence of the size of the formed aggregates was studied by dynamic light scattering (DLS). DLS indicated two populations of aggregates in the mixed system, small primary micelles (0.5-2 nm), and larger aggregates with a hydrodynamic radius in the range of 50-150 nm.  相似文献   

14.
通过六氟丙烯三聚体(全氟壬烯)氧基苯磺酸钠(C9F17OC6H4SO3Na, OBS)与阳离子碳氢表面活性剂CnNR[CnH2n+1N(CH3)3Br, CnNM, n=8, 10和CnH2n+1N(CH2CH3)3Br, CnNE, n=8, 10, 12]复配, 研究了OBS与CnNR的摩尔比、 CnNR疏水链长及CnNR亲水基团大小对此类阴、 阳离子碳氟-碳氢表面活性剂混合体系的临界胶束浓度(cmc)、 最低表面张力(γcmc)、 总饱和吸附量(Γtm)及极限分子面积(Amin)的影响. 结果表明, 通过与CnNR复配, OBS的cmc和γcmc均大幅下降, 达到了全面增效的结果. 不同摩尔比的OBS-C8NE混合体系中, 摩尔比为1:1时表面活性最好, cmc和γcmc均最小; 偏离等摩尔比时, OBS过量时混合体系的cmc小于C8NE过量时混合体系的cmc, 但γcmc相差不大. 与单体系相比, OBS-C8NE混合体系的Γtm明显增大、 Amin明显变小. OBS与不同疏水链长的CnNE复配时, cmc的变化规律为C8NE>C10NE>C12NE, 表明CnNE疏水链长的增加能降低混合体系的cmc. 通过比较CnNM和CnNE(n=8, 10)的表面活性发现, 改变混合体系中CnNR的亲水基团大小对混合体系的表面活性无明显影响.  相似文献   

15.
雷声  张晶  黄建滨 《物理化学学报》2007,23(11):1657-1661
采用表面张力测定法和核磁共振谱等方法研究了阴离子表面活性剂十二烷基硫酸钠(SDS)在水溶性室温离子液体[BMim]BF4/水混合溶剂中的表面性质及聚集行为, 发现极少量[BMim]BF4的介入就可以显著降低SDS的临界胶束浓度, 提高体系的表面活性; 且[BMim]BF4在混合溶剂中所占的摩尔分数(x1)在一定范围内(0相似文献   

16.
An anionic/cationic mixed surfactant aqueous system of surfactin and cetyl trimethyl ammonium bromide (CTAB) at different molar ratios was studied by surface tension and fluorescence methods (pH 8.0). Various parameters that included critical micelle concentration (cmc), micellar composition (X 1), and interaction parameter (β m) as well as thermodynamic properties of mixed micelles were determined. The β m was found to be negative and the mixed system was found to have much lower cmc than pure surfactant systems. There exits synergism between anionic surfactin and cationic CTAB surfactants. The degree of participation of surfactin in the formation of mixed micelle changes with mixing ratio of the two surfactants. The results of aggregation number, fluorescence anisotropy, and viscosity indicate that more packed and larger aggregates were formed from mixed surfactants than unmixed, and the mixed system may be able to form vesicle spontaneously at high molar fraction of surfactin.  相似文献   

17.
Synthesis and properties of a novel class of gemini pyridinium surfactants   总被引:1,自引:0,他引:1  
A novel class of gemini pyridinium surfactants with a four-methylene spacer group was synthesized, and their surface-active properties and interactions with polyacrylamide (PAM) were evaluated by surface tension, fluorescence, and viscosity measurements. A comparison between the gemini pyridinium surfactants and their corresponding monomers was also made. The cmc's of gemini pyridinium surfactants are much lower than those of the corresponding monomeric surfactants. The C20 value is about one order of magnitude lower than that of corresponding monomers, and the longer the hydrophobic chains of the surfactants, the lower the cmc value. Surface tension measurements of the surfactant-PAM mixed systems show that the critical aggregation concentration (cac) value is much lower than the cmc value of the surfactant system alone. Viscosity measurements of the surfactant-PAM mixed systems show that the relative viscosity of the surfactant-PAM system decreased with increasing concentration of surfactant. Additionally, fluorescence measurements of the surfactant-PAM mixed system suggest the formation of surfactant-polymer aggregates, and the gemini pyridinium surfactant with longer hydrophobic chains have a stronger interaction with PAM, owing to the stronger hydrophobic interaction.  相似文献   

18.
The influence of hydrophobic chain length in nonionic surfactants on interfacial and thermodynamics properties of a binary anionic‐nonionic mixed surfactant was investigated. In this study, nonionic surfactants lauric‐monoethanolamide (C12 MEA) and myrisitic‐monoethanolamide (C14 MEA) were mixed with an anionic surfactant, α‐olefin sulfonate (AOS). The critical micelle concentration (cmc), maximum surface excess (Γmax), and minimum area per molecule (Amin) were obtained from surface tension isotherms at various temperatures. The thermodynamic parameters of micellization and adsorption were also computed. Micellar aggregation number (Nagg), micropolarity, and binding constant (Ksv) of pure and mixed surfactant system was calculated by fluorescence measurements. Rubingh's method was applied to calculate interaction parameters for the mixed surfactant systems.  相似文献   

19.
The aggregation properties of Tyr-Phe dipeptide and Val-Tyr-Val tripeptide were studied in aqueous solution and in the presence of SDS and SDS-polymer environments using UV-visible, surface tension, fluorescence and circular dichroism (CD) techniques. Both the peptides formed micelles. The cmc values obtained for dipeptide and tripeptide are 2×10(-5) and 4×10(-5) M, respectively in aqueous solution at 25°C. The presence of additives (SDS and polymer) hindered the micelle formation of peptides. The cmc values obtained by various methods are in good agreement with each other. Effect of peptides on the aggregation properties of SDS also was investigated. The cmc of SDS was decreased in presence of peptides and were reduced with increase in temperature. Using monophasic micellization concept, the association constant (K(A)) for the SDS-peptide mixed micellar systems was determined. Using biphasic model, the thermodynamic parameters viz; ΔG°(m), ΔH°(m) and ΔS°(m) for SDS-water and SDS-peptide-water mixed micellar systems, the standard free energy for transfer of SDS from aqueous to peptide additive environments were estimated at various temperatures. These results suggest that the SDS is more stable in micellized form in the SDS-water-peptide ternary systems compared to the situation in the corresponding SDS-water binary systems.  相似文献   

20.
The interaction between the nonionic surfactant C12EO6 and the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer EO20PO68EO20 (P123) has been investigated by means of isothermal titration and differential scanning calorimetry (DSC) as well as static and dynamic light scattering (SLS and DLS). P123 self-assembles in water into spherical micelles at ambient temperatures. At raised temperatures, the DSC data revealed a sphere-to-rod transition of the P123 micelles around 60 degrees C. C12EO6 interacts strongly with P123 micelles in aqueous solution to give mixed micelles with a critical micelle concentration (cmc) well below the cmc for pure C12EO6. The presence of C12EO6 also lowers the critical micelle temperature of P123 so aggregation starts at significantly lower temperatures. A new phenomenon was observed in the P123-C12EO6 system, namely, a well-defined sphere-to-rod transition of the mixed micelles. A visual phase study of mixtures containing 1.00 wt % P123 showed that in a narrow concentration range of C12EO6 both the sphere-to-rod transition and the liquid-liquid phase separation temperature are strongly depressed compared to the pure P123-water system. The hydrodynamic radius of spherical mixed micelles at a C12EO6/P123 molar ratio of 2.2 was estimated from DLS to be 9.1 nm, whereas it is 24.1 nm for the rodlike micelles. Furthermore, the hydrodynamic length of the rods at a molar ratio of 2.2 is in the range of 100 nm. The retarded kinetics of the shape transition was detected in titration calorimetric experiments at 40 degrees C and further studied by using time-resolved DLS and SLS. The rate of growth, which was slow (>2000 s), was found to increase with the total concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号