首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
硬脂酸丁酯微胶囊的制备与表征   总被引:3,自引:0,他引:3  
采用原位聚合法用脲醛树脂包覆硬脂酸丁酯,制得相变储热微胶囊.利用激光粒径分布仪、扫描电镜、差示扫描量热仪(DSC)和傅立叶转换红外光谱仪分别研究了微胶囊的粒径分布、表面形态、热性能和壳结构.结果表明,所得微胶囊粒径分布均匀,表面光洁,具有良好的韧性和致密性.不同的制备工艺对微胶囊粒径分布有一定的影响,其中在28 000 r/m in下乳化5 m in时,所得微胶囊的粒径分布集中在1~4μm.DSC测定结果显示硬脂酸丁酯微胶囊的最大相变焓为68 J/g.  相似文献   

2.
利用界面聚合法,以异佛尔酮二异氰酸酯与己二胺为单体聚合形成的聚脲为外壳,以正十八烷、薄荷素油的混合物为芯材,制备了具有薄荷香味的相变微胶囊。利用光学显微镜、扫描电镜、红外光谱仪、差示扫描量热仪、热重分析仪等对微胶囊的形貌、化学结构和热性能进行了表征。结果表明:制备的微胶囊为球形,平均粒径约7.0μm,有较高的储热能力和较好的热稳定性;芯材中添加8.3%的正十四醇或高熔点石蜡,可很好地抑制相变微胶囊的过冷现象。  相似文献   

3.
蓄热调温石蜡相变微胶囊的制备及性能   总被引:2,自引:0,他引:2  
采用界面聚合法,以甲苯2,4-二异氰酸酯和哌嗪为反应单体、30号相变石蜡为芯材,制得了一种智能纺织品用蓄热调温相变微胶囊。通过红外光谱、扫描电镜、差示扫描量热仪对微胶囊的化学组成、形貌和蓄热性能进行了表征,测试了其耐热和耐溶剂性。结果表明:所得微胶囊主要为球形,表面光滑,平均粒径为10.6μm,对w=0.40的NaOH溶液、w=0.60的H2SO4溶液、无水乙醇、丙酮稳定,能被甲苯、二甲基甲酰胺、乙醚破坏。相变潜热为118 J/g,石蜡在微胶囊中的质量分数为84%。  相似文献   

4.
细粒径石蜡微胶囊相变材料的制备与性能   总被引:3,自引:0,他引:3  
采用阳离子和非离子复配乳化剂,通过原位聚合制备以丙烯酸酯为壁材,石蜡为芯材的细粒径微胶囊相变材料.采用傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、差示扫描量热(DSC)、热重(TG)及激光粒度仪分析表征了微胶囊相变材料的化学结构、表面形貌和热性能.结果表明,乳化剂的种类和壁材单体的配比对微胶囊性能有重要的影响.当采用阳离子和非离子复配乳化剂,壁材中单体甲基丙烯酸甲酯(MMA)与丙烯酸(AA)的质量比为9∶1时,微胶囊相变材料呈球形且表面光滑紧凑,尺寸仅为0.2~0.35μm,具有良好的储热能力,相变潜热高达169 J/g;微胶囊中壁材对石蜡芯材的分解具有明显热阻滞作用,分解温度比纯石蜡提高了150℃.  相似文献   

5.
以2-苯基咪唑(2PZ)为芯材,聚甲基丙烯酸缩水甘油酯(PGMA)为壁材,采用溶剂挥发技术,成功地制备了一种新型潜伏性热释放型微胶囊固化剂2PZ-PGMA。通过FT-IR、TGA、SEM、粒度分析和DSC对微胶囊固化剂的化学结构、芯材含量、表面形貌、粒径分布及固化性能等进行了表征。所制备的微胶囊固化剂表面光滑,粒径分布较窄,平均粒径为约17.6μm,壁材厚度为约1.1μm,芯材2PZ含量为20.1(wt)%。由微胶囊固化剂与环氧树脂E-51制备的单组分胶粘剂,具有优良的固化特性、潜伏性能和粘接性能,可在100℃下30min内实现固化,室温储存期达33d以上,拉伸剪切强度达15.36MPa。  相似文献   

6.
以熔点在58~60℃的半精炼石蜡作为相变芯材,与单体、分散剂水溶液形成核壳结构分散液,室温下自由基聚合制备甲基丙烯酸甲酯-丙烯酸的共聚物(P(MMA-co-AA))为壳材的微胶囊.分别用相差显微镜、扫描电镜、差示扫描量热分析仪和傅里叶变换红外光谱仪测定了微胶囊的形貌、热性能和壳材化学结构.微胶囊的直径范围为1~5μm,其中相变芯材的含量可达70%左右,具有较高的相变潜热(99 J/g),有望应用于空调、供暖等领域.  相似文献   

7.
李清  侯丽雅  章维一 《分析化学》2011,39(6):882-885
基于微流体数字化微喷射技术进行了单细胞微胶囊制备实验,探究了单细胞微胶囊的制备条件和粒径变化规律.结果显示,当微喷嘴的内径及液体的脉冲流动步长小于2倍的细胞最小粒径时,可实现单细胞微胶囊的制备.单细胞微胶囊的平均粒径随着微喷嘴内径的增大而线性增大,可通过改变微喷嘴内径调节单细胞微胶囊的粒径大小.以200μm微喷嘴制备猪...  相似文献   

8.
采用二步加料的分散聚合法制备单分散聚甲基丙烯酸缩水甘油酯(PGMA)微球, 并使其水解, 得到水包油(O/W)型Pickering乳液稳定剂. 在Pickering乳液聚合过程中, 利用相分离机制, 形成了聚苯乙烯(PSt)和 PGMA复合为整体囊壳的微胶囊相变材料. 微胶囊平均粒径达76 μm, 囊芯含量高达83%, 相变焓达到174 J/g, 具有很高的储热容量.  相似文献   

9.
采用类核壳乳液聚合法制备了相变调温微胶囊(Micro PCMs),并与聚乙烯醇(PVA)水溶液共混,制备了具有相变调温功能的PVA膜,对微胶囊及PVA复合膜的表面形貌、化学结构、耐热性能及相变调温等性能进行了研究,同时对PVA膜的断裂强度和拉伸强度进行了表征.结果表明,相变调温PVA膜的相变焓随MicroPCMs用量的增加而增大,当MicroPCMs与PVA的质量比为1∶1时,相变调温PVA膜的熔融焓与结晶焓分别为43.9和-44.8J/g,具有较好的相变调温功能.  相似文献   

10.
以石墨烯/正十八烷为芯材,三聚氰胺-尿素-甲醛树脂(MUF)为壁材,苯乙烯马来酸酐共聚物(SMA)为乳化剂,采用乳液聚合法制备相变微胶囊.系统研究了石墨烯对于正十八烷微胶囊性能的影响.采用场发射扫描电子显微镜(FE-SEM)、傅里叶变换红外光谱分析仪(FTIR)、拉曼光谱仪、X射线衍射仪(XRD)、Hot Disk热常数分析仪、示差扫描量热仪(DSC)和热重分析仪(TGA)对相变微胶囊的外貌形态、晶型结构和热性能进行表征和分析.结果表明,微胶囊呈圆球形且光滑,粒径约为1~30μm.当石墨烯添加量为0.1 g时,微胶囊的形貌无明显变化.当加入过量石墨烯时,微胶囊出现了明显的团聚现象.XRD测试表明,包覆于微胶囊中的石墨烯没有使微胶囊的结晶峰位置发生明显的偏移,这对于微胶囊的实际应用是有利的.微胶囊的相变热焓和包覆率随着石墨烯的加入而不断减小,但芯材的过冷现象得到了明显的改善.石墨烯对于微胶囊传热性能的提升有着显著的效果.当石墨烯的添加量为0.2 g时,微胶囊的导热系数为0.092 W·m-1·K-1,与纯微胶囊相比提高了约51%,这说明石墨烯改善了传统相变微胶囊的传热性能,提升了相变微胶囊的应用性能.  相似文献   

11.
In a previous work [J. Microencapsulation, in press], polyamide microcapsules containing a poly(acrylic acid) gel as a macromolecular ligand (PAA-CAPS) with a mean diameter of 210 μm were prepared using an original two-step polymerization process combining interfacial polycondensation and radical polymerization in a water in oil inverse emulsion system. Extractions of many divalent cations were examined. In this work, we proposed to synthesise by the same process, smaller microcapsules with a mean diameter of 10 μm (PAA-μCAPS). Reference polyamide microcapsules, i.e. without ligand were also synthesized (μCAPS) and (CAPS) [J. Microencapsulation, in press]. Microcapsule wall thickness was evaluated by SEM and TEM observations of microcapsule cross-section cuts, microcapsule water content was determined by thermogravimetric experiments. Specific surface area and total volume of the pore of microcapsules were determined by BET method based on N2 adsorption/desorption. The comparison of the extractabilities and the stripping of Cu(II) into the various kind of microcapsules were examined.  相似文献   

12.
Chitosan and sodium alginate have the opposite charges; they can become a gelatin by the electrostatic attraction, High-voltage electrostatic droplet generator method was used to prepare chitosan-sodium alginate microcapsule. Multi-layer chitosan-sodium alginate microcapsule was prepared through layer-by-layer self-assembly, and the morphology was investigated. In addition, the release property of ofloxacin in microcapsules was studied by UV-Vis microscopy under different conditions such as pH value, layer number, etc. The results showed that the prepared microcapsules have a smooth surface with average particle size about 100 μm. The result of controlled release indicated that the prepared microcapsules are pH-independent, and the rate of release decreased when the layer number increases.  相似文献   

13.
含VE微胶囊的制备及其控制释放性能研究   总被引:6,自引:0,他引:6  
以天然维生素E(VE)为芯材,利用Shirasu porous glass (SPG) 膜乳化结合液中干燥法,制备了粒径单分散的聚苯乙烯(PS)微胶囊.微胶囊的粒径为膜孔径的4倍,粒径单分散系数CV小于0.2.考察了改变PS和VE的比例及微胶囊的粒径对控制释放性能的影响.  相似文献   

14.
Alginate/poly(acryloxyethyl-trimethylammonium chloride-co-2-hydroxyethyl methacrylate) [poly(Q-co-H)] microcapsules were prepared by ionic gelation (Ca2+) for adhesion and growth of goat mammary epithelial cell culture. In the procedure of microcapsule formation, alginate was first pumped into a CaCl2 solution and then transferred into a poly(Q-co-H). The poly(Q-co-H) was prepared by free-radical polymerization in aqueous solution at 60 °C using potassium persulfate as initiator. The microcapsules obtained were sterilized using gamma radiation according to International Standards Organization (ISO)/TR 13409. Scanning electron microscopy studies indicated the high porosity and rough surface marked by large wrinkles of the microcapsule surface, and the diameter of the microcapsule was approximately 497 μm, and diameters ranking 480–515 μm were obtained. Optical michrography shows the epithelial morphology acquired by goat epithelial mammary cells (GMEC) on poly(Q-co-H)/NaAlg microcapsule surface after 8 h of culture.  相似文献   

15.
Kim C  Chung S  Kim YE  Lee KS  Lee SH  Oh KW  Kang JY 《Lab on a chip》2011,11(2):246-252
We present a microfluidic device generating three-dimensional (3D) coaxial flow by the addition of a simple hillock to produce an alginate core-shell microcapsule for the efficient formation of a cell spheroid. A hillock tapered at downstream of the two-dimensional focusing channel enables outside flow to enclose the core flow. The aqueous solution in the core flow was focused and surrounded by 1.8% alginate solution to be solidified as a shell. The double-layered coaxial flow (aqueous phase) was broken up into a droplet by the shear flow of oleic acid (oil phase) containing calcium chloride for the polymerization of the alginate shell. The droplet generated from the laminar coaxial flow maintained a double-layer structure and gelation of the alginate solution made a core-shell microcapsule. The shell-thickness of the microcapsule was adjusted from 8-21 μm by the variation of two aqueous flow rates. The inner shape of the shell was almost spherical when the ratio of the water-glycol mixture in the core flow exceeded 20%. The microcapsule was used to form a spheroid of embryonic carcinoma cells (embryoid body; EB) by injecting a cell suspension into the core flow. The cells inside the microcapsule aggregated into an EB within 2 days and the EB formation rate was more than 80% with strong compaction. The microcapsule formed single spherical EBs without small satellite clusters or a bumpy shape as observed in solid microbeads. The microfluidic chip for encapsulation of cells could generate a number of EBs with high rate of EB formation when compared with the conventional hanging drop method. The core-shell microcapsule generated by 3D focusing in the microchannel was effective in forming large number of spherical cell clusters and the encapsulation of cells in the microcapsule is expected to be useful in the transplantation of islet cells or cancer stem cell enrichment.  相似文献   

16.
A method for the production of near-monodispersed spherical silica particles with controllable porosity based on the formation of uniform emulsion droplets using membrane emulsification is described. A hydrophobic metal membrane with a 15 μm pore size and 200 μm pore spacing was used to produce near-monodispersed droplets, with a mean size that could be controlled between 65 and 240 μm containing acidified sodium silicate solution (with 4 and 6 wt % SiO(2)) in kerosene. After drying and shrinking, the final silica particles had a mean size in the range between 30 and 70 μm. The coefficient of variation for both the droplets and the particles did not exceed 35%. The most uniform particles had a mean diameter of 40 μm and coefficient of variation of 17%. By altering the pH of the sodium silicate solution and aging the gel particles in water or acetone, the internal structure of the silica particles was successfully modified, and both micro- and mesoporous near-monodispersed spherical particles were produced with an average internal pore size between 1 and 6 nm and an average surface area between 360 and 750 m(2) g(-1). A material balance and particle size analysis provided identical values for the internal voidage of the particles, when compared to the voidage as determined by BET analysis.  相似文献   

17.
Two variants of layer-by-layer deposition of polyelectrolytes (polyacrylic acid and polyethyleneimine) for the encapsulation of low-molecular-weight hydrophobic substrates (carboxylic acid esters) were proposed. The spectrophotometric method was used to study the kinetics of alkaline hydrolysis of the esters by monitoring the permeability of microcapsule shells. The first procedure provides a preliminary microencapsulation of substrates into the carbonate matrix to form stable capsules 7–10 μm in size with a low wall permeability. According to the second procedure, the polyelectrolytes were adsorbed directly on the dispersed substrate. In this case, nanosized capsules are formed, whose permeability is controlled by the ultrasonic treatment and the number of deposited layers.  相似文献   

18.
分别以甲苯-2,4-二异氰酸酯(TDI)和异佛尔酮二异氰酸酯(IPDI)为单体,通过原位聚合法制备了离子液体@聚脲(PU)微胶囊,并与环氧树脂共混制得环氧树脂复合材料.利用扫描电子显微镜分析了微胶囊及复合材料的表面形貌,通过电子万能试验机和摩擦磨损试验机探究了微胶囊改性复合材料在不同情况下的力学性能和摩擦学性能,用傅里叶变换红外光谱对微胶囊进行表征.分析结果表明,以IPDI为单体合成的微胶囊摩擦学性能更加优异,并且随着微胶囊用量的增加,复合材料的摩擦学性能有明显提高,当微胶囊添加质量分数为20%时,含有微胶囊的复合材料具有较低的滑动摩擦系数并且摩擦面较光滑,这是由于在实验过程中,随着微胶囊壁材的破损,芯材离子液体被释放,形成了一层致密的润滑膜.  相似文献   

19.
Narrow disperse microparticles are formed by dispersion polymerization of commercial divinylbenzene in acetonitrile or ethanol solution in the presence of 2,2′-azobis(2-methylpropionitrile) initiator and polyvinylpyrrolidone stabilizer. The particles have average diameters between 1 and 9 μm depending on monomer concentration, solvent, and temperature. While the smaller particles are relatively smooth, surface texture increases with diameter to give popcorn shapes at 9 μm diameter. High crosslinker concentration is shown to be essential for particle formation. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
A novel propisochlor microcapsules suspension (CS) was prepared via in-situ polymerization. The preparation of melamine-formaldehyde resin microcapsules containing propisochlor with different ratios of core-shell material was investigated. The synthesized microcapsules were characterized by Fourier Transform Infrared spectrometer, Scanning Electron Microscope, Ultraviolet spectrometry, Thermogravimetric analyses and particle size analyzer. As the ratio of core/shell was 1, the diameter of the prepared microcapsules was the smallest (3.55?µm), while narrowest size distribution (span: 1.19) and the melamine formaldehyde microcapsules possessed the highest encapsulation efficiency (93.26%). The surface of the microcapsules was smooth and the microcapsules had poor adhesion. These microcapsules had compact microstructures and global shapes, which had a good thermal stability and propisochlor could be preserved better in the poly(melamine-formaldehyde) (PMF) microcapsules. These results indicated that the prepared microcapsule had better performance. Additionally, the propisochlor was easily degraded through microorganisms and had a short half-life. The microcapsule suspension of propisochlor hasn’t been researched yet. Therefore, it is significant to prepare microcapsule suspension. The technology of controlled release has effectively prolonged the persistence of active ingredients. More importantly, there is no use of organic solvents in the preparation of microcapsules suspension, which avoided the pollution of solvents to the ecological environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号