首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
新型混合导体透氧膜的制备及其在甲烷转化反应中的应用   总被引:1,自引:0,他引:1  
用EDTA 柠檬酸联合络合法合成了新型混合导体透氧膜材料 ,成功地制备了致密膜片并对其透氧性能进行了考察 .结果发现 ,此新材料具有非常大的透氧能力 ,850℃时在膜一端为干燥的流动空气而另一端为流动的氦气下 ,透氧量高达 0 744μmol/(cm2 ·s) .考察了膜片本身对甲烷的活化性能 ,发现导体膜对甲烷氧化偶联具有催化活性 ,随着甲烷流速的增加 ,甲烷转化率降低 ,而C2 选择性升高 .研究了膜反应器中甲烷部分氧化制合成气反应 ,甲烷转化率约为 90 % ,CO选择性约为 98% ,CO/H2 比约为 2 ;同时 ,膜的透氧量急剧增加到约 6 0 1 μmol/(cm2 ·s) ,这归结于膜反应侧氧分压的急剧降低 .  相似文献   

2.
应用组成为Ba0.5Sr0.5Co0.8Fe0.2O3-(的钙钛矿型混合导体陶瓷膜制成膜反应器。该膜在进行氧分离的同时具有活化甲烷氧化偶联的催化功能。随着温度升高和膜的富氧端氧分压的增大,透氧量有所增加。在空气、氦气的氧分压梯度下,850(C,膜厚度为1.5 mm时,JO2可达到1.2 mL/(cm3(min)。同时在800(C~900(C温度范围内,该膜对于甲烷转化为乙烷和乙烯一般只具有0.5%~3.5%的低转化率,而选择性可达40%~70%。在反应尾气中发现了大量的未反应的分子氧,说明过量的氧与甲烷未经催化反应的气相反应导致了C2的选择性相对较低。OCM膜反应模式情况下的透氧量与空气、氦气梯度情况下的透氧量相比只有微小增加,这与POM膜反应模式情况下透氧量大量增加显著不同。  相似文献   

3.
研究钴离子部分取代铜离子对YBa2Cu3O6+δ的氧非计量值δ和氧渗透率的影响.对于钴替代的样品,氧非计量的绝对值变大,且其数值不再随温度和氧分压的变化发生显著变化.YBa2Cu2CoO6+δ样品在中、高温具有可观的氧渗透率.对于厚度为1.2 mm的致密YBa2Cu2CoO6+δ样品,在850℃时,只要在样品两端施加较小的氧分压差(PO2=21.2 kPa、 PO2=101 Pa),其氧渗透率即可达57 μmol/cm2 s, 明显高于YBa2Cu3O6+δ的氧渗透率(31 μmol/cm2 s).YBa2Cu2CoO6+δ的高氧渗透率在结构上可被归结为位于晶胞基面上的氧离子和氧空位的均匀分布.  相似文献   

4.
考察了Sr-Co -Fe -O系列和Bi-Sr-Fe -O系列混合导电型无机透氧膜材料在氧分压小于 1.0 13Pa的气氛中 ,在 850℃和 950℃高温下加热 2 4~ 10 0h前后结构的变化。发现Bi -Sr -Fe-O系列透氧膜材料具有良好的化学稳定型 ,可以用于还原气氛下的催化反应。  相似文献   

5.
大颗粒FCC汽油芳构化催化剂烧碳再生动力学研究   总被引:2,自引:0,他引:2  
采用微型固定床反应器和气相色谱联合装置,研究了大颗粒FCC汽油芳构化催化剂的烧碳再生动力学和再生产物中CO2与CO的摩尔比.结果表明,大颗粒FCC汽油芳构化催化剂的烧碳反应速率与碳含量和氧分压的关系符合一级反应规律;但由于受内扩散的影响,其烧碳反应速率仅为本征烧碳反应速率的60%左右.在600 ℃~720 ℃再生产物中CO2/CO摩尔比随再生温度的增加而减小,720 ℃以后,该比值显著增大;随着氧分压的增加,CO2/CO摩尔比直线增加.  相似文献   

6.
利用自行设计的自约束渗透装置,采用热导检测器在线跟踪穿透实验过程中CO2或He的渗透信号,在40℃条件下,对比研究了CO2和He在阳泉煤CH4饱和基质煤柱(φ6×13mm)中的渗透行为,讨论了煤对气体的吸附或吸取作用及孔隙气压对渗透率的影响.研究表明,有别于煤对He的作用,在CO2和CH4交替渗透时,不同的CH4吹扫时...  相似文献   

7.
采用1,2-双(三乙氧基硅基)乙烷(BTESE)和十三氟辛基三乙氧基硅烷(PFOTES)为前驱体,在酸性条件下通过溶胶-凝胶法制备了十三氟辛基修饰的有机-无机杂化SiO2膜材料。利用接触角测量、红外光谱、动态光散射和N2吸附等测试技术分别对膜材料的疏水性、溶胶粒径和孔结构进行表征,并深入研究有支撑膜材料的氢气渗透、分离性能以及长期水热稳定性。结果表明,十三氟辛基修饰后的膜材料由亲水性变成了疏水性,当nPFOTES/nBTESE=0.6时膜材料对水的接触角达到(110.4±0.4)°,膜材料还保持微孔结构,孔径分布在0.5~0.8 nm。氢气在修饰后的膜材料中的输运遵循微孔扩散机理,在300℃时,氢气的渗透率达到8.5×10-7mol·m-2·s-1·Pa-1,H2/CO2,H2/CO和H2/SF6的理想分离系数分别为5.49,5.90和18.36,均高于相应的Knudsen扩散分离因子。在250℃且水蒸气物质的量分数为5%水热环境下陈化250 h,氢气渗透率和H2/CO2的理想分离系数基本保持不变,膜材料具有良好的水热稳定性。  相似文献   

8.
钴掺杂二氧化硅膜的制备、表征及氢气分离性能   总被引:1,自引:0,他引:1  
采用正硅酸乙酯(TEOS)和Co(NO3)2.6H2O为前驱体通过溶胶-凝胶法制备掺钴微孔二氧化硅膜,研究钴在二氧化硅膜材料中的存在状态、膜材料孔结构以及膜材料的气体渗透和分离性能。结果表明钴元素以Si-O-Co的形式存在于SiO2骨架之中,掺杂Co 10%的微孔SiO2膜具有典型的微孔结构,其孔体积为0.119 cm3·g-1,平均孔径在0.52 nm左右且孔径主要分布在0.4~0.55 nm之间。氢气在膜材料中的输运低温下遵循Knudsen扩散机理,高于100℃时遵循活化扩散机理,300℃时膜材料的H2渗透率达到6.41×10-7 mol.m-2.s-1.Pa-1,H2/CO2分离系数达到6.61,高于Knudsen扩散的理想分离系数。  相似文献   

9.
采用改进的浮动催化法在多孔Al2O3基体上制备了垂直取向的碳纳米管阵列, 并用旋转喷涂法将聚苯乙烯填充于碳纳米管的空隙, 进一步将其制备成复合碳纳米管膜, 研究了H2和CO2单组分在碳纳米管复合膜中的渗透性能, 实验结果表明, H2/CO2的理想分离系数随着复合膜中碳管管径的减小而增大, 在管径较小的复合膜中, 气体渗透分离系数高于努森扩散限制, 达到6.25, 具有一定的分离效果. 两种气体在复合膜中的渗透率随着渗透温度的增加而减小.  相似文献   

10.
以三氟丙基三甲氧基硅烷(TFPTMS)和正硅酸乙酯(TEOS)作为前驱体,通过溶胶-凝胶法制备三氟丙基修饰的SiO2膜材料,研究了三氟丙基修饰对膜材料孔结构和疏水性的作用、疏水膜材料的氢气渗透和分离性能以及水热稳定性能。结果表明三氟丙基修饰后的膜材料仍保持良好的微孔结构,孔径狭窄分布在0.45~0.7 nm之间。修饰后膜材料疏水性明显提高,当nTFPTMS/nTEOS=0.6时,对水的接触角达到(102.7°±0.1°)。H2在修饰后膜材料的输运遵循微孔扩散机理,在300℃时,H2的单组份渗透率达到4.77×10-7mol.m-2.s-1.Pa-1,H2/CO2的理想分离系数以及双组份分离系数分别达到6.99和6.93,均高于其Knudsen扩散分离因子。在200℃水蒸气物质的量含量为5%的环境中陈化220 h后,H2的单组份渗透率仅在前3 h有轻微下降,然后基本保持不变,说明三氟丙基修饰的SiO2膜具有良好的水热稳定性。  相似文献   

11.
Dense tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) membranes were successfully prepared by the plastic extrusion method. The oxygen permeation flux was determined at different oxygen partial pressures in the shell side and different temperatures between 700 and 900 °C. The oxygen vacancy diffusion coefficients (Dv) at different temperatures were calculated from the dependence of oxygen permeation flux on the oxygen partial pressure term based on the surface current exchange model. No unsteady-state of oxygen permeation flux was observed at the initial stage in our experiments. The reason is the equilibrium time is too short (less than 10 min) to observe the unsteady-state in time. The increase of the helium flow rate can increase the oxygen permeation flux, which is due to the decrease of the oxygen partial pressure in the tube side with increasing of the helium flow rate. The oxygen permeation flux can also be affected by the air flow rate in the shell side when the air flow rate is lower than 150 ml/min. But the oxygen permeation flux is insensitive to the air flow rate when the air flow is higher than 150 ml/min. The membrane tube was operated steadily for 150 h with oxygen permeation flux of 1.12 ml/(cm2 min) at 875 °C. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis showed that both the surface exposed to air and the surface exposed to helium of the BSCFO membrane tube after permeation for 150 h are similar to the fresh membrane tube in composition and structure. These results indicated that the membrane tube exhibits high structure stability.  相似文献   

12.
Mixed oxygen-ionic and electronic conducting membranes of SrFe(Cu)O3−δ were prepared by solid-state reaction method. The crystal structure, oxygen nonstoichiometry, and phase stability of the materials were studied by TGA and XRD. Oxygen permeation fluxes through these membranes were studied at operating temperature ranging from 750 to 950 ℃. Results showed that doping Cu in SrFeO3−δ compound had a significant effect on the formation of single-phased perovskite structure. For SrFe1−xCuxO3−δ series materials, the oxygen nonstoichiometry and the oxygen permeation flux increased considerably with the increase of Cu-doping content (x = 0.1–0.3). The sintering property of the membrane decreased significantly when the Cu substitution amount reached 40%. SrFe0.7Cu0.3O3−δ showed high oxygen permeation flux, but SrCuO2 and Sr2Fe2O5 phases formed in the compound after oxygen permeation test induced cracks in the membrane.  相似文献   

13.
在预涂自制微米晶种的多孔管状莫来石支撑体表面上,采用两步变温法诱导合成T型分子筛膜。在溶胶配比nSiO2∶nAl2O3∶nNa2O∶nK2O∶nH2O=1∶0.05∶0.3∶0.1∶30合成条件下,通过变温晶化过程成功制备出高性能的T型分子筛膜。XRD和SEM结果表明,该法可在支撑体表面上较快地形成一层连续致密的纯相T型分子筛膜层,较大缩短了膜合成时间和提高了膜致密性。在优化条件下所合成的膜具有优异的渗透汽化性能,且膜制备的重复性良好。75℃时,在水/异丙醇(10/90,w/w)混合物体系中膜的渗透通量和分离因子分别高达4.25 kg.m-2.h-1,7600;在水/乙醇(10/90,w/w)混合物体系中膜的渗透通量和分离因子分别为2.87 kg.m-2.h-1,1 900。  相似文献   

14.
Pd/Ag/α-Al2O3 composite membranes were prepared by sequential electroless plating technique. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spec-troscopy, and inductively coupled plasma atomic emission spectroscopy techniques (ICP-AES). Effects of annealing time, Ag content, and air treatment on the hydrogen permeation flux and morphology of the alloys were investigated. The results of the investigation showed that the prepared type of tube had a good potential as substrate for membrane preparation. In addition, a uniform defect-free alloy was prepared by annealing at 550 ℃ in H2 atmosphere. The permeation results showed an increase in H2 permeation flux by increasing the Ag content and the annealing time. In addition, the air treatment of the prepared membranes at 400 ℃ for 1 h changed the morphology of the alloy and substantially enhanced the hydrogen flux.  相似文献   

15.
A composite of oxygen ion conducting oxide Ce0.8Sm0.2O2−δ (60 vol.%) and electron conducting oxide La0.8Sr0.2CrO3−δ was prepared by sintering a powder compact at a temperature of 1550 °C. No significant reaction between the two constituent oxides was observed under preparation and oxygen permeation conditions. Appreciable oxygen permeation fluxes through the composite membrane were measured at elevated temperatures with one side of it exposed to the ambient air and the other side to a flowing helium gas stream. The oxygen flux initially increased with time, and took a long time to reach a steady value. A steady oxygen permeation flux as high as 1.4 × 10−7 mol cm−2 s−1 was obtained with a 0.3 mm thick membrane at 950 °C under a relatively small oxygen partial pressure difference of 0.21 bar/0.0092 bar. It was revealed that the overall oxygen permeation process was mainly limited by the transport in the bulk of the membrane in the range of the membrane thickness greater than 1.0 mm, and the limitation by the surface oxygen exchange came into play at reduced thickness of 0.6 mm.  相似文献   

16.
Gas permeation tests using nitrogen, oxygen, hydrogen, helium and carbon dioxide were performed to assess how membrane modification procedures affect the separating layer morphology of thin-film composite reverse osmosis membranes. Gas selectivity data provided evidence for the presence of nanoscale separating layer defects in dry samples of six commercial membrane types. These defects were eliminated when the membrane surface was coated with a polyether–polyamide block copolymer (PEBAX 1657), as indicated by a 25-fold decrease in gas permeance and at least a 2-fold increase in most selectivity values. Treatment with n-butanol followed by drying reduced water flux and gas flux by 30% and 75%, respectively, suggesting that using n-butanol as a solvent for applying coatings negatively affects membrane performance. The results of this study demonstrate that gas permeation measurements can be used to detect morphological features that impact gas and water membrane flux.  相似文献   

17.
Dense mixed proton and electron conducting membrane made of BaCe0.95Nd0.05O3-δ(BCNd5)was prepared by pressing followed by sintering.X-ray diffraction(XRD)was used to characterize the phase structure of both the powder and the sintered membranes.The microstructure of the sintered membranes was studied by scanning electron microscopy(SEM).Hydrogen permeation through the BCNd5 membrane was studied using a high temperature permeator.The hydrogen permeation fluxes under wet conditions are higher than those under dry conditions,which is due to H hopping via surface OH groups.At 925℃,a hydrogen permeation flux of 0.02 mL/min cm2 was obtained under wet condition.which recommends BCNd5 as a potential material for hydrogen-selective membranes.  相似文献   

18.
MethaneutilizationhasbeendrawingconsiderableattentionrecentlyduetothelargeamountofnatUralgasavailabletobeupgradedandtheworldwidedemandforlow-costtransportationfuelsl'2.Amongthemanyconversionroutes,partialoxidationofmethane(POM)tosyngasprovedanewwayforthepotentialalternativetotoday'sindustrialsteamreformingprocesses.HoweveT,althoughveryactivecatalystsforthePOMtosyngashavebeenreported,large-scaleplantshavenotyetbeenconstructed.AIargeadiabatictemperatUreriseatthefrontoftheco-bedeasilycausesre…  相似文献   

19.
Dense mixed proton and electron conducting membrane made of BaCe0.95Nd0.05O3-δ (BCNd5) was prepared by pressing followed by sintering. X-ray diffraction (XRD) was used to characterize the phase structure of both the powder and the sintered membranes. The microstructure of the sintered membranes was studied by scanning electron microscopy (SEM). Hydrogen permeation through the BCNd5 membrane was studied using a high temperature permeator. The hydrogen permeation fluxes under wet conditions are higher than those under dry conditions, which is due to H^+ hopping via surface OH groups. At 925℃, a hydrogen permeation flux of 0.02 mL/min cm^2 was obtained under wet condition, which recommends BCNd5 as a potential material for hydrogen-selective membranes.  相似文献   

20.
A reactor module, consisting of six gas-tight hollow fibre membranes made of the mixed ionic–electronic conducting perovskite, , has been tested for oxygen permeation and stability during methane oxidation in the temperature range of 540 to 960°C. Rigorous leak testing was undertaken and it was demonstrated that the module could be adequately sealed. Oxygen permeation fluxes were similar to those reported by previous workers. At higher temperatures of operation, it appeared that mass transfer limited the oxygen flux, as this flux was dependent upon the flow rates on either side of the membrane. In this way, reactant flow rates could be used to manipulate the transmembrane oxygen flux. It was found that the product distribution on the methane side was dependent upon this flux, with carbon monoxide and hydrogen production being favoured at low fluxes and carbon dioxide and water production being favoured at higher fluxes. Furthermore, at low oxygen flow rates, periodic increases in the transmembrane oxygen flux were observed. The cause of this behaviour is unclear but may be as a result of phase/stoichiometric changes associated with the membrane material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号