首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen permeable membrane
Authors:Haihui Wang  You Cong  Weishen Yang  
Institution:

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, P.O. Box 110, 457 Zhongshan Road, Dalian 116023, China

Abstract:Dense tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) membranes were successfully prepared by the plastic extrusion method. The oxygen permeation flux was determined at different oxygen partial pressures in the shell side and different temperatures between 700 and 900 °C. The oxygen vacancy diffusion coefficients (Dv) at different temperatures were calculated from the dependence of oxygen permeation flux on the oxygen partial pressure term based on the surface current exchange model. No unsteady-state of oxygen permeation flux was observed at the initial stage in our experiments. The reason is the equilibrium time is too short (less than 10 min) to observe the unsteady-state in time. The increase of the helium flow rate can increase the oxygen permeation flux, which is due to the decrease of the oxygen partial pressure in the tube side with increasing of the helium flow rate. The oxygen permeation flux can also be affected by the air flow rate in the shell side when the air flow rate is lower than 150 ml/min. But the oxygen permeation flux is insensitive to the air flow rate when the air flow is higher than 150 ml/min. The membrane tube was operated steadily for 150 h with oxygen permeation flux of 1.12 ml/(cm2 min) at 875 °C. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis showed that both the surface exposed to air and the surface exposed to helium of the BSCFO membrane tube after permeation for 150 h are similar to the fresh membrane tube in composition and structure. These results indicated that the membrane tube exhibits high structure stability.
Keywords:Dense tubular membrane  Oxygen separation  Inorganic membrane  Perovskite  Mixed-conducting
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号