首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以烯丙基聚乙二醇(APEG)、甲基丙烯酸甲酯(MMA)和丙烯酸丁酯(BA)为共聚物单体合成了含聚乙二醇(PEG)的羟基丙烯酸预聚物(BOH),该预聚物再与α,ω-三乙氧基硅烷封端的聚二甲基硅烷低聚物(TSU)和α,ω-三乙氧基硅烷封端的全氟聚醚低聚物(PFU)通过缩合反应制得含有PEG的氟硅改性丙烯酸交联网络防污涂层.通过核磁共振氢谱(~1H-NMR)、红外光谱(FTIR)对聚合物的结构进行了表征.通过原位纳米测试系统、接触角测试和生物评价等表征方法,探讨了树脂中TSU,PFU和BOH配比对表面能、弹性模量及其生物防污性能的影响.结果表明兼具氟硅低表面能性和PEG抗蛋白吸附性能的交联网络涂层TFS-BOH-B具有好的防污性能,且随着TSU和PFU含量增加,防污性能提高.  相似文献   

2.
采用传统自由基共聚合方法合成了新型的含氟大分子单体PFMA-MA,并将其与甲基丙烯酸甲酯(MMA)、丙烯酸异丁酯(IBA)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPTS)进行自由基共聚合成了长氟链丙烯酸酯共聚物(ACLC)。对该聚合物的表面性能以及本体性能进行了研究。结果表明,少量的PFMA-MA便可使得到的共聚物ACLC的憎水性大幅度提高。通过X射线光电子能谱(XPS)研究大幅提高憎水性的机理,结果表明ACLC中的长氟链段具有强烈的迁移特性,氟原子富集于表面,使得材料憎水性得到提高。ACLC具有优异的附着力、硬度和低吸水率。含长氟侧链梳形丙烯酸酯共聚物有望应用在疏水、防水涂层材料等领域。  相似文献   

3.
UV防污助剂主要包括有机氟和有机硅等,前者结构主要是全氟聚醚链段,后者结构主要是聚二甲基硅氧烷链,利用氟硅的低表面张力起到防污作用,所以主要链段结构的细微差异会导致性能的明显变化。本文选取C1607、C1603和KY1203分别代表聚二甲基硅氧烷、K型全氟聚醚链段和Z型全氟聚醚链段,并与UV涂料复配和固化,研究不同氟硅链段对UV涂料的疏水疏油性能的影响规律。结果证明,聚二甲基硅氧烷链段具有较强的迁移性,低添加量就可达到疏水效果,但仅能应用于低端的防水防油需求。全氟聚醚类UV防污助剂的疏水疏油性能要远优于有机硅,在较高添加量时K型全氟聚醚类UV防污助剂具有更强的疏水疏油性能。  相似文献   

4.
聚谷氨酸苄酯-聚乙二醇嵌段共聚物的合成和表征   总被引:11,自引:0,他引:11  
通过嵌段共聚技术,合成了聚γ-苄基L-谷氨酸(PBLG)作为疏水性链段-聚乙二醇(PEG)作为亲水性链段的嵌段共聚物。用对甲苯磺酸酯化-氨水皂化法合成带有端氨基的聚乙二醇(AT-PEG),光气-甲苯液相法制备谷氨酸苄酯-N-羟酸酐(BLG-NCA)。用AT-PEG引发BLG-NCA聚合制备PBLG-PEG或PBLG-PEG-PBLG,通过不同的单体、引发剂浓度比调节聚合物分子量。用GPC、^1HNMR、IR对聚合物的结构进行了表征。结果表明,带有端氨基的聚乙二醇确实能引发BLG-NCA生成PBLG和PEG的嵌段共聚物,产物中几乎没有残存的PEG,共聚物的分子量可控。  相似文献   

5.
自组装共混制备PEG化基因载体   总被引:2,自引:1,他引:1  
通过含PEG链段的两亲聚合物的自组装共混, 制备了基于疏水作用力的新型PEG化非病毒基因载体. 分别选用胆固醇-聚乙二醇和聚乙二醇-聚丙二醇-聚乙二醇作为共混改性剂, 研究两亲聚合物的种类对组装体在生理盐溶液中的稳定性及基因转染效率的影响. 结果表明, 疏水驱动力的大小是获得稳定的PEG化基因超分子组装体的关键. 通过对两亲聚合物中疏水链段的选择调控, 可制备稳定的PEG化基因超分子组装体, 提高基因传递体系在生理盐溶液中的稳定性及基因转染效率. 通过自组装共混, 为新型PEG化基因超分子组装体的制备提供了切实可行的新方法.  相似文献   

6.
采用两步溶液聚合方法合成了一系列聚二甲基硅氧烷(PDMS)-4,4′-二苯基甲烷二异氰酸酯(MDI)-聚乙二醇(PEG)多嵌段共聚物.利用轻敲模式原子力显微镜(AFM)观察了嵌段共聚物的表明形貌,研究了退火、共聚物组成以及PEG分子量和不同的官能团对涂层表面微相分离行为的影响,同时对微相分离行为的形成机理也作了相应的探讨.研究表明,该嵌段共聚物即使在PDMS含量大于50wt%时,涂层表面仍呈现出规整有序的纳米级相分离结构,其中疏水相和亲水相分别由PDMS链段和MDI-PEG组分构成.  相似文献   

7.
将苯胺(An)与甲氧基聚乙二醇邻氨基苯基醚氧化共聚,制备了梳状接枝共聚物PAn-g-PEG.研究了梳状接枝共聚物的UV-Vis、微观结构、热稳定性和溶解成膜性等随侧链聚乙二醇(PEG)链段的变化规律.结果表明随PAn-g-PEG中PEG链段长度和含量的提高,共聚物的溶解性和成膜性能显著提高,电子导电率缓慢降低,热稳定性变差.共聚物具有微相分离结构,其形态随PEG链段的改变分别为“海-岛相”和“双连续相”;提高PEG链段长度和含量,PAn-g-PEG能形成稳定的水溶性分散体系,并能浇注成柔韧平整的导电高分子自支撑膜.  相似文献   

8.
采用分子动力学模拟方法比较了溶菌酶蛋白在两种典型聚合物防污材料聚乙二醇(PEG)和聚二甲基硅氧烷(PDMS)表面的吸附行为,在微观上探讨了聚合物膜表面性质对蛋白质吸附的影响.根据蛋白质与聚合物膜之间的相互作用、能量变化及表面水化层分子的动力学行为,解释了PEG防污涂层相对于PDMS表面具有更佳防污效果的原因:(1)相比PDMS涂层,蛋白质与PEG涂层的结合能量较低,使其结合更加疏松;(2)蛋白质吸附到材料表面要克服表面水化层分子引起的能障,PEG表面与水分子之间结合紧密,结合水难于脱附,造成蛋白质在其表面的吸附需要克服更高的能量,不利于蛋白质的吸附.  相似文献   

9.
采用分子动力学模拟方法比较了溶菌酶蛋白在两种典型聚合物防污材料聚乙二醇(PEG)和聚二甲基硅氧烷(PDMS)表面的吸附行为, 在微观上探讨了聚合物膜表面性质对蛋白质吸附的影响. 根据蛋白质与聚合物膜之间的相互作用、能量变化及表面水化层分子的动力学行为, 解释了PEG防污涂层相对于PDMS表面具有更佳防污效果的原因: (1) 相比PDMS涂层, 蛋白质与PEG涂层的结合能量较低, 使其结合更加疏松; (2) 蛋白质吸附到材料表面要克服表面水化层分子引起的能障, PEG表面与水分子之间结合紧密, 结合水难于脱附, 造成蛋白质在其表面的吸附需要克服更高的能量, 不利于蛋白质的吸附.  相似文献   

10.
利用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)结合源后分解(PSD)技术对甲氧基封端的聚乙二醇-b-聚己内酯(MPEG-b-PCL)两嵌段共聚物进行了结构分析. 根据得到的MALDI-TOF MS谱图和PSD碎片信息清晰地确定了嵌段共聚物的嵌段长度和嵌段分布. 结果表明, 采用MALDI-TOF MS结合PSD技术研究这类嵌段共聚物链结构非常有效. 这为更好地认识和应用这类嵌段共聚物提供了重要的依据, 同时也建立了分析这类嵌段共聚物的方法.  相似文献   

11.
3D structured cells have great drug screening potential because they mimic in vivo tissues better than 2D cultured cells. In this study, multi-block copolymers composed of poly(2-methoxyethyl acrylate) (PMEA) and polyethylene glycol (PEG) are developed as a new kind of biocompatible polymers. PEG imparts non-cell adhesion while PMEA acts as an anchoring segment to prepare the polymer coating surface. The multi-block copolymers show higher stability in water than PMEA. A specific micro-sized swelling structure composed of a PEG chain is observed in the multi-block copolymer film in water. A single NIH3T3-3-4 spheroid is formed in 3 h on the surface of the multi-block copolymers with 8.4 wt% PEG. However, at a PEG content of 0.7 wt%, spheroid formed after 4 days. The adenosine triphosphate (ATP) activity of cells and the internal necrotic state of the spheroid change depending on PEG loading in the multi-block copolymers. As the formation rate of cell spheroid on low-PEG-ratio multi-block copolymers is slow, internal necrosis of cell spheroid is less likely to occur. Consequently, the cell spheroid formation rate by changing the PEG chain content in multi-block copolymers is successfully controlled. These unique surfaces are suggested to be useful for 3D cell culture.  相似文献   

12.
Amphiphilic copolymers of a methacrylic monomer (SiMA) carrying a polysiloxane side chain and an acrylic monomer (ZA) with a mixed poly(ethylene glycol) (PEG)‐fluoroalkyl side chain (10–85 mol % ZA) were incorporated as the surface‐active components into poly(dimethylsiloxane) (PDMS) network blends at different loadings (1 and 4 wt % with respect to PDMS). Wettability of the coating surfaces was investigated by contact angle measurements, and their surface chemical composition was determined by angle‐resolved X‐ray photoelectron spectroscopy. It was found that the surface segregation of the fluoroalkyl segments of the amphiphilic copolymers was responsible for the high enrichment in fluorine concentration within 10 nm of the coating surface. The PEG segments were also concentrated at the polymer?air interface. The chemical composition of the films was proven to be relatively little affected by immersion in water. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
含氟高分子/SiO_2杂化疏水材料的制备及涂层表面性质   总被引:1,自引:0,他引:1  
采用自由基溶液聚合与溶胶-凝胶法相结合的方法制备了含氟高分子/SiO2杂化疏水材料.通过甲基丙烯酸十二氟庚酯(FA)与乙烯基三乙氧基硅烷(VTES)共聚合成了含氟硅共聚物(PFAS),进一步通过原硅酸乙酯(TEOS)与PFAS共聚物溶液共水解缩聚制备了具有含氟侧基的碳碳主链高分子和硅氧网络的含氟高分子/SiO2杂化疏水材料.研究结果表明,SiO2组分含量提高可以显著增加杂化材料薄膜的涂敷厚度,改善其耐久性能,而对杂化材料疏水性能的影响不大.  相似文献   

14.
Organic–inorganic hybrid materials were prepared through the sol–gel approach starting from tetraethoxysilane (TEOS), as silica precursor, and triethoxysilane terminated polymers; before gelling the solutions were applied to polyethylene (PE) films and slabs by spin-coating, without any previous surface pre-treatment of the substrate, and finally the coatings were thermally cured at 60 °C for 24 h. Among the various polymers used to prepare the coatings, only polyethylene-b-poly(ethylene glycol) copolymers gave good results in terms of adhesion to the PE substrates, and hybrid coatings with different organic–inorganic ratios were prepared. As suggested by visual inspection and SEM investigation, and confirmed by the critical loads derived from scratch tests, a good adhesion of the coating to the PE substrates was obtained, probably due to the presence of PE segments in the organic phase of the coating. Transparency as well as SEM and DSC data were in agreement with the formation of a nanostructured hybrid coating, with a high level of interpenetration between organic and inorganic domains. It was also observed that these hybrid coatings are able to improve significantly the scratch resistance and slightly increase the wettability with respect to uncoated PE. This approach to the surface-properties modification of PE appears as a simple and convenient method for the functionalization of PE substrates.  相似文献   

15.
To evaluate the selectivity and efficiency of solid phase microextraction (SPME) fiber coatings, synthesized by sol–gel technology, roles of precursors and coating polymers were extensively investigated. An on-line combination of capillary microextraction (CME) technique and high performance liquid chromatography (HPLC) was set up to perform the investigation. Ten different fiber coatings were synthesized in which five of them contained only the precursor and the rests were prepared using both the precursor and coating polymer. All the coatings were chemically bonded to the inner surface of copper tubes, intended to be used as the CME device and already functionalized by self-assembly monolayers of 3-(mercaptopropyl)trimethoxysilane (3MPTMOS). The selected precursors included tetramethoxysilane (TMOS), 3-(trimethoxysilyl)propylmethacrylate (TMSPMA), 3-(triethoxysilyl)-propylamine (TMSPA), 3MPTMOS, [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane (EPPTMOS) while poly(ethyleneglycol) (PEG) was chosen as the coating polymer. The effects of different precursors on the extraction efficiency and selectivity, was studied by selecting a list of compounds ranging from non-polar to polar ones, i.e. polycyclic aromatic hydrocarbon, herbicides, estrogens and triazines. The results from CME–HPLC analysis revealed that there is no significant difference between precursors, except TMOS, in which has the lowest extraction efficiency. Most of the selected precursors have rather similar interactions toward the selected analytes which include Van der Walls, dipole–dipole and hydrogen bond while TMOS has only dipole–dipole interaction and therefore the least efficiency. TMOS is silica but the other sorbents are organically modified silica (ORMOSIL). Our investigation revealed that it is rather impossible to prepare a selective coating using conventional sol–gel methodologies. The comparison study performed among the fiber coatings contained only a precursor and those synthesized by a precursor along with coating polymer proved that the extraction efficiency obtained for all coatings are the same. This is an indication that by selecting the appropriate precursor there is no need to use any coating polymer. In overall, a fiber coating in sol–gel process could be synthesize with no coating polymer which leads to faster, easier, cheaper and more controllable synthesis.  相似文献   

16.
采用XPS与接触角法研究氟聚合物表面结构与性能   总被引:6,自引:0,他引:6  
本文采用接触角和变角XPS方法对FA共聚物的表面能、 表面微相结构做了进一步的研究.  相似文献   

17.
采用饥饿法将2-甲基丙烯酰氧乙基磷酰胆碱(MPC)分别与甲基丙烯酸十八烷基酯(SMA)、 甲基丙烯酸十二烷基酯(LMA)及甲基丙烯酸正丁酯(BMA)聚合, 通过改变投料比例和沉淀剂种类, 合成了一系列含磷酰胆碱基团的仿细胞膜结构的两亲性二元随机共聚物. 1H NMR和元素分析结果表明, 合成的两亲性二元随机共聚物的组成与投料比相近. DSC结果表明, 聚合物具有较低的玻璃化转变温度. 表面张力及水的动态接触角(DCA)研究发现, 聚合物涂层表面具有明显的两亲性及表面结构易变性, 在空气中憎水基团在表面取向, 在水环境中亲水的磷酰胆碱基团则迁移取向到涂层表面形成仿细胞外层膜结构界面, 最终形成不溶于水的仿细胞膜结构涂层.  相似文献   

18.
Well‐defined amphiphilic pentablock copolymers Siy‐(EGx‐FAz)2 composed of polysiloxane (Si), polyethylene glycol (EG), and perfluorohexylethyl polyacrylate (FA) blocks are synthesized by ATRP of FA monomer starting from a difunctional bromo‐terminated macroinitiator. Diblock copolymers EGx‐FAz are also synthesized as model systems. The block copolymers are used, either alone or blended with a PDMS matrix in varied loadings, to prepare antibiofouling coatings. Angle‐resolved XPS and contact angle measurements show that the coating surface is highly enriched in fluorine content but undergoes reconstruction after contact with water. Protein adsorption experiments with human serum albumin and calf serum highlight that diblock copolymers resist protein adhesion better than do pentablock copolymers. Blending of the pentablock copolymer with PDMS results in increased protein adsorption. By contrast, the PDMS‐matrix coatings show high removal percentages of sporelings of the green fouling alga Ulva linza. © 2015 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 2015 , 53, 1213–1225  相似文献   

19.
Highly hydrophobic epoxy coatings with the surface energy as low as 14.5 mJ m–2 and contact angles with water of 120°–150° were prepared from powdered compounds modified with less than 2 wt % finely dispersed polytetrafluoroethylene particles by dry mixing. As shown by scanning electron microscopy, EDX microanalysis, and atomic-force microscopy, the film formation at 180°С and formation of a polymer network matrix are accompanied by predominant migration of polytetrafluoroethylene particles to the air/coating interface, leading to gradient distribution of fluorine across the film and significant enrichment of the coating surface with fluorine. By varying the polytetrafluoroethylene content, it is possible to obtain hydrophobic coatings with satisfactory physicomechanical properties, smooth or rough surface, including micrometric and nanometric roughness, and different surface energy.  相似文献   

20.
New amphiphilic block copolymers S nSz m consisting of blocks with varied degrees of polymerization, n and m, of polystyrene, S, and polystyrene carrying an amphiphilic polyoxyethylene-polytetrafluoroethylene chain side-group, Sz, were prepared by controlled atom transfer radical polymerization (ATRP). The block copolymers, either alone or in a blend with commercial SEBS (10 wt% SEBS), were spin-coated in thinner films (200-400 nm) on glass and spray-coated in thicker films ( approximately 500 nm) on a SEBS underlayer (150-200 microm). Angle-resolved X-ray photoelectron spectroscopy (XPS) measurements proved that at any photoemission angle, varphi, the atomic ratio F/C was larger than that expected from the known stoichiometry. Consistent with the enrichment of the outer film surface (3-10 nm) in F content, the measured contact angles, theta, with water (theta w > or = 107 degrees ) and n-hexadecane (theta h > or = 64 degrees ) pointed to the simultaneous hydrophobic and lipophobic character of the films. The film surface tension gamma S calculated from the theta values was in the range 13-15 mN/m. However, the XPS measurements on the "wet" films after immersion in water demonstrated that the film surface underwent reconstruction owing to its amphiphilic nature, thereby giving rise to a more chemically heterogeneous structure. The atomic force microscopy (AFM) images (tapping mode/AC mode) revealed well-defined morphological features of the nanostructured films. Depending on the chemical composition of the block copolymers, spherical (ca. 20 nm diameter) and lying cylindrical (24-29 nm periodicity) nanodomains of the S discrete phase were segregated from the Sz continuous matrix (root-mean-square, rms, roughness approximately 1 nm). After immersion in water, the underwater AFM patterns evidenced a transformation to a mixed surface structure, in which the nanoscale heterogeneity and topography (rms = 1-6 nm) were increased. The coatings were subjected to laboratory bioassays to explore their intrinsic ability to resist the settlement and reduce the adhesion strength of two marine algae, viz., the macroalga (seaweed) Ulva linza and the unicellular diatom Navicula perminuta. The amphiphilic nature of the copolymer coatings resulted in distinctly different performances against these two organisms. Ulva adhered less strongly to the coatings richer in the amphiphilic polystyrene component, percentage removal being maximal at intermediate weight contents. In contrast, Navicula cells adhered less strongly to coatings with a lower weight percentage of the amphiphilic side chains. The results are discussed in terms of the changes in surface structure caused by immersion and the effects such changes may have on the adhesion of the test organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号