首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
通过可逆加成-裂解链转移聚合和原子转移自由基聚合,制备了以聚丙烯酸叔丁酯为主链、以聚(聚乙二醇单甲醚甲基丙烯酸酯)为侧链的两亲性接枝共聚物PtBA-g-PPEGMEMA,该方法克服了以往通过聚合物修饰来引入接枝点时所存在的接枝点密度不高和不可控的局限性.接着,以PtBA-g-PPEGMEMA为载体,对抗肿瘤药物阿霉素进行了负载,制备得到了尺寸为164.8nm的纳米载药胶束.其释放试验表明,该体系具有缓释特征.  相似文献   

2.
通过树状接枝聚己内酯的侧羟基及端羟基与氯甲酰化的聚乙二醇进行接枝反应,得到带有亲水性聚乙二醇链段的新型两亲性树状接枝共聚物.1H-NMR分析显示,接枝率为50%左右.GPC分析结果表明,共聚物分子量呈较窄的单峰分布,分子量与接枝前相比明显增高.两亲性共聚物能直接分散在水中形成胶束溶液.以芘为荧光探针的测试结果表明其临界胶束浓度有降低.动态光散射测得胶束平均粒径在16至31 nm之间,粒径分散指数适中,PDI在0.25至0.39之间.TEM显示胶束粒子为不规整球形,由更小的粒径为几个纳米的微粒聚集而成,这些微粒的大小刚好与单个大分子的尺寸相匹配.因此,两亲性树状接枝聚己内酯在水相中存在单分子胶束与多分子组装胶束的平衡.得益于支化聚合物结构中的纳米空腔,两亲性树状接枝聚合物胶束对紫杉醇具有优良的包载能力.  相似文献   

3.
基于聚(β-丁内酯)(PHB)和聚乙二醇(PEG)的两亲性三嵌段共聚物聚(β-丁内酯)-聚乙二醇-聚(β-丁内酯)(PHB-PEG-PHB)可在聚乙二醇钾盐大分子引发剂的作用下、以四氢呋喃为溶剂,通过β-丁内酯(BL)的阴离子开环聚合进行制备,调节BL与聚乙二醇钾盐的配比,可制备分子量不同的共聚物.产物可通过1H-NMR、13C-NMR、FTIR、DSC、GPC等测试进行表征,DSC结果表明无定形的PHB阻碍了PEG的结晶,且随着PHB链段长度的增加,阻碍作用更加明显.PHB-PEG-PHB可在水中通过沉淀/溶剂蒸发技术进行自组装形成具有核壳结构的纳米粒子,并通过SEM、DLS手段对其表征,发现粒子尺寸在纳米级,形态为球形或方形.聚合物的初始浓度对纳米粒子的形态和尺寸有明显影响,随着聚合物初始浓度的降低,纳米粒子的尺寸降低.  相似文献   

4.
将3-(2-二硫代苯甲酸基丙酰氧基)丙基二甲基甲氧基硅烷化学键合于硅片表面.以甲基丙烯酸甲酯和苯乙烯为单体,在硅片表面进行可逆加成-断裂链转移(RAFT)接枝聚合.X-射线光电子能谱仪证实聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、苯乙烯/甲基丙烯酸甲酯的共聚物(poly(MMA-co-St))都接枝到硅片表面.但3个体系表现出不同的性质,甲基丙烯酸甲酯的RAFT聚合可控性差,分子量比设计分子量大得多,分子量分布指数宽,接枝密度仅为0·03chains/nm2;苯乙烯均聚合的活性/可控性好、分子量分布窄,接枝密度提高到0·21chains/nm2;共聚合体系综合了两个均聚体系的优点,分子量分布较窄,接枝密度最高为0·31chains/nm2,聚合物膜厚随转化率、数均分子量基本呈线性增长.  相似文献   

5.
聚乙二醇单甲醚修饰多壁碳纳米管的研究   总被引:1,自引:0,他引:1  
多壁碳纳米管(MWNT)经过酸化、酰氯化后与聚乙二醇单甲醚进行接枝反应,实现了碳纳米管的表面修饰。经修饰的MWNT在水中的分散性大大增加。通过FTIR、XPS、Raman、TEM、TGA等手段表征了接枝后产物的化学结构,证明聚乙二醇单甲醚是以共价键的形式接入MWNT表面上的。并利用TGA结果估算出聚乙二醇单甲醚在MWNT表面的接枝密度约为平均每256个碳原子上有一根聚合物链。  相似文献   

6.
利用L 谷氨酸和苯甲醇反应制备了L 谷氨酸 苄酯 ,然后将其与三聚光气反应制备了N 羧基 L 谷氨酸 环内酸酐 (NCA) .以聚乙二醇单甲醚 (MPEG)为原料 ,制备了端氨基聚乙二醇单甲醚 (MPEG NH2 ) ,并以此作为引发剂 ,引发NCA开环聚合 ,合成了不同分子量的聚L 谷氨酸 苄酯 聚乙二醇单甲醚 (PBGM )嵌段共聚物 .利用IR、1 H NMR、DSC、GPC等方法对共聚物结构进行了表征 .结果表明 ,MPEG NH2 引发NCA开环聚合得到的是嵌段共聚物 ,通过1 H NMR谱得到共聚物组成及数均分子量 ;随着共聚物中MPEG含量的增高 ,聚L 谷氨酸 苄酯的亲水性有所改善  相似文献   

7.
天冬氨酸(ASP)自身热缩聚产物聚琥珀酰亚胺(PSI)通过与氨基化聚乙二醇单甲醚(α-胺基-ω-甲氧基-聚乙二醇)和十二胺(DDA)进行连续两步开环反应,制备了双亲性蜈蚣形聚合物聚琥珀酰亚胺接枝聚乙二醇与十二胺(PSI-g-PEG-DDA).随着改变疏水链段DDA的接枝比例,通过胶束粒径的变化确定了最佳的接枝比例.核磁共振波谱(1H-NMR)及凝胶渗透色谱(GPC)对聚合物的性质进行了表征.通过相转移法,聚合物对油溶性超顺磁性氧化铁纳米粒子进行包覆,制备了新型的水溶性超顺磁性氧化铁纳米粒子(PSI-g-PEGDDA@IONPs).动态光散射(DLS)和透射电镜(TEM)对新型的水溶性氧化铁纳米粒子的粒径与形貌进行了表征.体外T2核磁造影成像(MRI in vitro)确定了制备的氧化铁纳米粒子的R2质子驰豫率.肝癌小鼠模型的体内核磁造影成像(MRI in vivo)结果表明新型氧化铁纳米粒子对肿瘤部位有明显的T2核磁造影增强效应,并有很长的体内循环半衰期.以上实验结果表明,新型的水溶性纳米氧化铁粒子可以作为一种潜在的用于肿瘤检测的核磁造影剂.  相似文献   

8.
利用二乙醇胺和丙烯酸甲酯合成的N,N-二羟乙基-3-胺基丙酸甲酯作为AB2型单体,以纳米SiO_2为核,通过其表面羟基与单体的反应,制得SiO_2接枝超支化聚酯的纳米粒子(SiO_2-HBP);再利用超支化端羟基与α-己内酯进行开环反应,合成了含柔性长链的二氧化硅-长链超支化聚酯杂化物(SiO_2-HBP-L);然后将杂化物与丁苯橡胶共混,制备了SiO_2-HBP-L/SBR纳米复合材料.FTIR、XPS和TGA测试证实改性后纳米SiO_2表面接枝了含长链超支化聚酯.SEM测试结果表明,相对于未改性的纳米SiO_2,SiO_2-HBP-L在乙醇和橡胶基体中分散性较好,且改性后纳米SiO_2与复合材料的相容性明显提高.硫化性能测试表明,SiO_2-HBP-L能大大缩短胶料的正硫化时间,增大总交联密度;同时SiO_2-HBP-L/SBR纳米复合材料的力学性能和耐磨性能有较大的提高,很好地实现了补强.  相似文献   

9.
采用烯丙基溴官能化聚异丁烯/高氯酸银体系引发四氢呋喃活性正离子聚合制备聚谷氨酸苄酯-g-(聚四氢呋喃-b-聚异丁烯)/银纳米复合材料(PBLG-g-(PTHF-b-PIB)/Ag).研究接枝密度对该纳米复合材料表面组成、形貌及自组装行为的影响,进一步探究纳米复合材料中银的含量、分布、晶型及存在形态,以布洛芬(IBU)作为模拟药物,研究接枝共聚物中接枝密度和平均支链长度对纳米复合材料载药释药行为的影响,通过抑菌圈法和MTT法研究纳米复合材料的抗菌性和细胞毒性.结果表明:通过烯丙基溴官能化聚异丁烯大分子引发四氢呋喃活性正离子开环聚合,可以原位制备不同接枝密度和不同平均支链长度的PBLG-g-(PTHF-b-PIB)/Ag纳米复合材料,其中银的质量含量在0.25%~3.9%之间,与其理论含量基本相吻合,银颗粒以聚集体形态存在,尺寸为5~10 nm,晶型为面心立方结构;该纳米复合材料在四氢呋喃/正己烷(4/1,V/V)混合介质中自组装形成胶束,胶束数目随接枝密度增加而减少,但尺寸增大;随接枝共聚物中接枝密度和纳米银含量增加,纳米复合材料的疏水性增加;随接枝共聚物中接枝密度增加,纳米复合材料表面形貌可由球形结构逐渐转化为双连续相结构;纳米复合材料的载药微球可以通过接枝共聚物中主链PBLG的空心螺旋结构、酰胺键及PTHF支链的醚键结构显示三重载药特性,载药量和累积释药量均随着接枝共聚物中接枝密度或PTHF链段长度增加而增加,且在37oC下的释药率是25oC下释药率的3倍左右.该纳米复合材料的抗菌性能随纳米银含量增加而增加,当纳米银含量为1.48%时,该纳米复合材料1周后细胞存活率为97.7%,即无细胞毒性.  相似文献   

10.
在混合反应溶剂体系DMF/H2O中,利用表面引发的单电子活性自由基聚合法(SET-LRP)制备了接枝有荧光和温敏性聚(N-异丙基丙烯酰胺)(PNIPAAM)刷的纤维素纳米晶.红外光谱和固体核磁共振13C谱中PNIPAAM特征峰的出现证明了接枝的成功.接枝前后的重量变化和核磁共振1H谱分析表明,随着混合溶剂中水的比例增加,单体转化率和接枝聚合物刷的分子量逐渐增加.热重和示差扫描量热分析显示,随着纤维素纳米晶表面接枝聚合物刷长度的增加,其分解温度和玻璃化转变温度均由低温向高温方向移动,并逐渐接近纯PNIPAAM的相应温度.由于PNIPAAM的温敏性,表面接枝的纤维素纳米晶表现出与染料溶液相反的温致荧光增强性能.  相似文献   

11.
Multifunctional, biocompatible, and brush‐grafted poly(ethylene glycol)/poly(ε‐caprolactone) (PEG/PCL) nanoparticles have been synthesized, characterized, and used as vehicles for transporting hydrophobic substances in water. For anchoring the polymer mixed brushes, we used magnetic‐silica particles of 40 nm diameter produced by the reverse microemulsion method. The surface of the silica particle was functionalized with biocompatible polymer brushes, which were synthesized by the combination of “grafting to” and “grafting from” techniques. PEG was immobilized on the particles surface, by “grafting to,” whereas PCL was growth by ROP using the “grafting from” approach. By varying the synthetic conditions, it was possible to control the amount of PCL anchored on the surface of the nanoparticles and consequently the PEG/PCL ratio, which is a vital parameter connected with the arrangement of the polymer brushes as well as the hydrophobic/hydrophilic balance of the particles. Thus, adjusting the PEG/PCL ratio, it was possible to obtain a system formed by PEG and PCL chains grafted on the particle's surface that collapsed in segregated domains depending on the solvent used. For instance, the nanoparticles are colloidally stable in water due to the PEG domains and at the same time are able to transport, entrapped within the PCL portion, highly water‐insoluble drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2966–2975  相似文献   

12.
By focusing on the grafted nanoparticles (NPs) embedded in polymer melts, a detailed coarse-grained molecular dynamics simulation is adopted to investigate the effects of the grafting density, the length of the matrix and grafted chains on the dispersion of the NPs. We have employed visualization snapshots, radial distribution functions (RDFs), the interaction energy between NPs, the number of neighbor NPs, and the conformation of the brush chains to clearly analyze the dispersion state of the grafted NPs. Our simulated results generally indicate that the dispersion of the NPs is controlled by both the excluded volume of the grafted NPs and the interface between the brushes and the matrix. It is found that increasing grafting density or grafted chain length leads to better dispersion, owing to larger excluded volume; however, increasing the length of the matrix chains leads to aggregation of NPs, attributed to both a progressive loss of the interface between the brushes and the matrix and the overlap between brushes of different NPs, intrinsically driven by entropy. Meanwhile, it is found that there exists an optimum grafting density (σ(c)) for the dispersion of the NPs, which roughly obeys the following mathematical relation: σ(c) is proportional to N(m)(K)/N(g)(L), where K, L > 0 and N(m) and N(g) represent the length of the matrix and grafted chain length, respectively. Considering the practical situation that the grafted brushes and the matrix polymer are mostly not chemically identical, we also studied the effect of the compatibility between the brushes and the matrix polymer by taking into account the attraction between the grafted chains and the matrix chains. In general, our comprehensive simulation results are believed to guide the design and preparation of high-performance polymer nanocomposites with good or even tailored dispersion of NPs.  相似文献   

13.
The adsorption-desorption of silica nanoparticles(NPs) on poly(ethylene glycol)(PEG) grafted onto gold(Au) substrate was studied by quartz crystal microbalance with dissipation monitoring(QCM-D) technique. The results of frequency and dissipation show that SiO2 NPs can be adsorbed strongly on PEG-SH brushes at pH of 9.6, and a new dense and rigid construction is formed. Adjusting the pH from 9.6 to 12.3 resulted in the desorption of silica NPs from the PEG brushes because of a significant weakening of the hydrogen bond between the silica NPs and PEG chains. In addition, the viscoelastic properties of the system during the adsorption-desorption process were also analyzed via the relationship between the normalized frequency(Δf/n) and mass. And the corresponding atomic force microscopy(AFM) images also exhibit morphological changes during the above process, consistent with the changes in viscoelasticity.  相似文献   

14.
Thin polymer films that prevent the adhesion of bacteria are of interest as coatings for the development of infection‐resistant biomaterials. This study investigates the influence of grafting density and film thickness on the adhesion of Staphylococcus epidermidis to poly(poly(ethylene glycol)methacrylate) (PPEGMA) and poly(2‐hydroxyethyl methacrylate) (PHEMA) brushes prepared via surface‐initiated atom transfer radical polymerization (SI‐ATRP). These brushes are compared with poly(ethylene glycol) (PEG) brushes, which are obtained by grafting PEG onto an epoxide‐modified substrate. Except for very low grafting densities (ρ = 1%), crystal violet staining experiments show that the PHEMA and PPEGMA brushes are equally effective as the PEG‐modified surfaces in preventing S. epidermis adhesion and do not reveal any significant variations as a function of film thickness or grafting density. These results indicate that brushes generated by SI‐ATRP are an attractive alternative to grafted‐onto PEG films for the preparation of surface coatings that resist bacterial adhesion.

  相似文献   


15.
孙喆  宋海华 《物理化学学报》2008,24(8):1487-1492
建立了用于模拟双峰聚合物分子刷相结构的自洽场理论. 模拟结果表明, 良溶剂条件能够促使双峰聚合物分子刷裂分为内外两个亚分子层, 其中短链居于内分子层, 而长链伸展到外分子层. 体系溶解性的加强不仅使聚合物的密度分布逐渐趋近强分凝理论的解析结果, 而且加大了分子链的伸展和链段的局部取向程度. 分子链接枝密度的增加能够促使分子刷的层化, 并且在良溶剂区域, 不同接枝密度的分子链密度分布可以回归到同一条主线. 在良溶剂条件下, 长链的聚合度对短链的密度分布影响不大, 但能够导致长链向外分子层扩展.  相似文献   

16.
Iron oxide nanoparticles (NPs) with a diameter 21.6 nm were coated with poly(maleic acid-alt-1-octadecene) (PMAcOD) modified with grafted 5,000 Da poly(ethyelene glycol) (PEG) or short ethylene glycol (EG) tails. The coating procedure utilizes hydrophobic interactions of octadecene and oleic acid tails, while the hydrolysis of maleic anhydride moieties as well as the presence of hydrophilic PEG (EG) tails allows the NP hydrophilicity. The success of the NP coating was found to be independent of the degree of grafting which was varied between 20 and 80% of the -MacOD-units, but depended on the length of the grafted tail. The NP coating and hydrophilization did not occur when the modified copolymer contained 750 Da PEG tails independently of the grafting degree. To explain this phenomenon the micellization of the modified PMAcOD copolymers in water was analyzed by small angle x-ray scattering (SAXS). The PMAcOD molecules with the grafted 750 Da PEG tails form compact non-interacting disk-like micelles, whose stability apparently allows for no interactions with the NP hydrophobic shells. The PMAcOD containing the 5,000 Da PEG and EG tails form much larger aggregates capable of an efficient coating of the NPs. The coated NPs were characterized using transmission electron microscopy, dynamic light scattering, ζ-potential measurements, and thermal gravimetry analysis. The latter method demonstrated that the presence of long PEG tails in modified PMAcOD allows the attachment of fewer macromolecules (by a factor of ~20) compared to the case of non-modified or EG modified PMAcOD, emphasizing the importance of PEG tails in NP hydrophilization. The NPs coated with PMAcOD modified with 60% (towards all -MAcOD- units) of the 5,000 PEG tails bear a significant negative charge and display good stability in buffers. Such NPs can be useful as magnetic cores for virus-like particle formation.  相似文献   

17.
Aqueous solutions of iron oxide nanoparticles (NPs) stabilized by poly(maleic acid-alt-1-octadecene) (PMAcOD) modified with the 5,000 Da poly(ethylene glycol) (PEG) or the short ethylene glycol (EG) tails were analyzed by small-angle X-ray scattering (SAXS). Advanced SAXS data analysis methods were employed to systematically characterize the structure and interactions between the NPs. Depending on the type of the grafted tail and the grafting density all NPs can be separated into three groups. All the samples contain mixtures of individual nanoparticles, their dynamic clusters and aggregates, and the fractions of these species are different in the different groups. The first group consists of NPs coated with PMAcOD modified with the long PEG tails with the maximal grafting density, and the content of dynamic clusters and aggregates in the samples of this group does not exceed 4%. The samples from the second group with less dense coatings demonstrate a larger amount (5-7%) of the aggregates and dynamic clusters. The samples from the third group consisting of the NPs protected by EG modified PMAcOD contain mostly individual NPs and some amount of dumbbell dimers without noticeable aggregation. Importantly, the solution behavior of the NPs is independent on the iron oxide core size. Our results therefore provide means of predicting stabilization and avoiding aggregation of NPs based on the type of a protective shell.  相似文献   

18.
In this paper, polyethylene glycol (PEG) molecules have been grafted onto the surface of nanometer silica in toluene by using 1,4‐phenylene diisocyanate (PPDI) as a coupling agent, and dibutyltion dilaurate (DBTDL) as a catalyst. This process was executed by using a one‐step procedure involving a first reaction of PPDI with silica and a subsequent reaction of isocyanate‐bound silica with PEG. The PEG‐grafted silica has been characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and SEM analyses. The effects of reaction time, temperature and molar ratio of reactant on the effectiveness of the surface grafting were also investigated. Optimum grafting conditions of PEG were obtained at the temperature of 80 °C for 8 h. Maximum grafting of PEG molecules ratio was 22.6%, and maximum overall grafting ratio was 35%, as determined by TGA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In situ modification of surfaces with thin layers of polymers is of growing interest as adjustment of surface properties can be made on demand. We present herein a supramolecular ‘grafting to’ polymer brush via the recognition of surface-bound cucurbit[8]uril (CB[8]) rotaxanes towards end-functionalised polyethylene glycol (PEG). This dynamic supramolecular method represents advantages over traditional approaches, which employ covalent bond formation in the ‘grafting to’ process. Brush properties can be easily modified post-preparation by exchanging the polymers with small molecules in a controlled, reversible manner. Including both redox- and light-responsive guests in a single rotaxane entity, the CB[8]-mediated preparation of the polymer brush offers unique opportunities to switch the brush composition efficiently. While the PEG brushes are well hydrated in a good solvent (water) and stretch away from the surface, they collapse in a poor solvent (toluene), leading to the formation of a dense layer on the surface. This collapsed conformation protects the heteroternary complexes of CB[8]-rotaxane from dissociation and maintains the attachment of polymers on the surface.  相似文献   

20.
Fourier transform infrared spectroscopy (FTIR) was used for determination of orientational and conformational characteristics of plane polypeptide brushes with different density of polypeptide chains grafted to modified silicon surface. The determination of grafting density of polypeptide chains in brushes, which depends on chemical structure of spacer groups, was carried out using ultraviolet (UV) spectroscopy. The influence of chemical structure of modifying spacer groups and outer conditions on the characteristics of plane polypeptide brushes was established. The peculiarities of α-helical structure (random coil transfer of polymer chains in brushes under the action of denaturants) were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号