首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
彭丹  李垚功  张晓环  陆国林  冯纯  黄晓宇 《化学学报》2007,65(19):2144-2150
利用合成的一种新型原子转移自由基聚合大分子引发剂和从主干接枝的方法制备了窄分布的两亲性接枝共聚物聚丙烯酸-g-聚甲基丙烯酸酯, 并对其结构进行表征. 产物主链和侧链的分子量可分别通过调整单体与引发剂的投料比和反应时间进行控制, 结构规整, 侧链单体适用范围广. 该合成方法不仅推动了接枝共聚物合成研究的进展, 其产物更为两亲性接枝共聚物自组装行为的研究提供了很好的研究对象.  相似文献   

2.
超声引发自由基聚合制备聚苯乙烯磺酸钠接枝炭黑   总被引:1,自引:0,他引:1  
通过在超声环境下,单体苯乙烯磺酸钠发生自由基聚合,生成的聚合物长链自由基被炭黑表面捕获,制备聚合物接枝炭黑.借助红外光谱、热重、粒度、透射电镜和zeta电位分析对该接枝炭黑进行表征.同时研究超声条件对接枝率的影响.结果表明,单体聚合并接枝到炭黑表面,同时炭黑的附聚体和一些大的聚集体结构被超声破碎,平均粒径大为减小;在300W超声波输出功率下,反应1h后,接枝率达到12.8%并趋于稳定.由于接枝分子链上磺酸基的存在,接枝炭黑在水中的分散稳定性显著改善.  相似文献   

3.
结合活性负离子聚合与原子转移自由基聚合(ATRP),采用机理转移法制备了一系列窄分布且分子量可控的星形梳状聚丁二烯-g-聚甲基丙烯酸甲酯接枝共聚物(SC-(PB-g-PMMA)).首先通过阴离子聚合,制备星形聚丁二烯,后经甲酸-过氧化氢原位环氧化对链中部分双键进行环氧化,再与原位生成2-溴异丁酸发生酯化反应,得到具有链中活性溴的星形大分子引发剂(SPB-Brn).然后,利用该大分子引发剂,采用CuCl/CuCl2/PMDETA催化体系,通过ATRP聚合单体MMA,合成出星形梳状SC-(PB-g-PMMA)聚合物.通过GPC,1H-NMR和FTIR等分析手段对合成的星形大分子引发剂及星形梳状聚合物进结构表征,证实得到目标产物,并同时研究了聚合物的热力学性质与溶液性质.  相似文献   

4.
应用原子转移自由基聚合(ATRP)法和"Click"化学方法,以含叠氮基的烯类化合物为单体,在硅胶表面引发聚合,制备了"梳状"手性固定相.该固定相的合成采用"接出"方法接枝聚合物链,使接枝层更为均匀,并且避免了传统合成方法(如物理吸附等)稳定性差的缺点.所得到的"梳状"手性固定相实现了对一些手性药物的分离;并考察了该固定相中聚合物链的密度和长度对其手性分离能力的影响.  相似文献   

5.
刘晓  李晟冉  吴一弦 《高分子学报》2017,(11):1753-1761
通过将烯丙基溴/高氯酸银引发体系引发四氢呋喃活性正离子开环聚合与"grafting onto"合成方法相结合,原位制备了不同接枝密度和接枝链长度的新型聚醋酸乙烯酯-g-聚四氢呋喃接枝共聚物(PVAc-g-PTHF)及其与纳米银(Ag)的复合材料.采用傅里叶变换红外光谱(FTIR)、核磁共振波谱(1H-NMR)和多角度激光光散射-黏度-凝胶渗透色谱仪(MALLS-VIS-GPC)分别表征了该接枝共聚物的化学结构、共聚组成、分子量、分子量分布、接枝支链数目及支化度,采用原子力显微镜(AFM)、示差扫描量热分析(DSC)、偏光显微镜(POM)研究了接枝共聚物中接枝支链数目及支链长度对其微观形态、单端受限链段结晶行为的影响,并探讨了该纳米复合材料的抗菌性能.结果表明:所制备的不同支链数目和支链长度的PVAc-g-PTHF/Ag纳米复合材料,均表现出良好的抗菌性能;接枝共聚物PVAc-g-PTHF的重均分子量可达4.52×10~5,分子分子量较窄(M_w/M_n~1.8),支化因子可达0.19.接枝共聚物PVAc-g-PTHF可形成明显的相分离结构,其微观形态与接枝支链数目有关;相比相同分子量的双端不受限的PTHF链,PVAc-g-PTHF接枝共聚物中单端受限PTHF支链的结晶速率明显降低;在确定接枝支链数目的情况下,随着支链中PTHF链段长度增加,其结晶逐渐增强,结晶熔融温度及熔融焓均稍有增加.  相似文献   

6.
采用波聚合工艺快速制备了聚(天然橡胶-接枝-丙烯酰胺)吸水膨胀橡胶.该波聚合过程能够在45℃左右被引发,最高波温达到112℃,波速0.3~1.0 cm·min-1.与传统间歇聚合工艺相比,波聚合制备样品的接枝效率达到51.8%,是传统间歇聚合制品的2.8倍;最大吸水倍率为7.66 g·g-1,是传统聚合制品的1.6倍;聚合时间为传统间歇聚合的1/8.扫描电镜观测发现,波聚合制备的吸水膨胀橡胶呈现均匀分布的蜂窝状微孔结构,孔直径在4~10μm之间,该结构有利于橡胶在保持高强度和弹性的同时,提高吸水性能;而传统间歇聚合制品内则以小于2μm的微孔为主,同时有少数近毫米级的条形大孔存在.  相似文献   

7.
综述了基于可控/活性正离子聚合方法及通过接出接枝(grafting from)、接出接枝(grafting onto)和大分子单体(macromonomer)三种合成策略来设计制备接枝共聚物的研究进展,详细概括了大分子引发剂结构、支链结构、大分子单体结构、大分子链上引发活性点以及官能基团的分布、支链长度及路易斯酸性质等因素对接枝共聚反应的影响规律和不同接枝共聚物的设计合成,总结了上述三种不同合成路径的各自特点,进一步阐述所制备的接枝共聚物在特定环境中的微观结构、形态与外界条件响应性,探讨接枝共聚物的潜在应用领域。  相似文献   

8.
以硫酸铈铵为引发剂,采用水溶液聚合体系,在酸性介质中实施了丙烯酰胺(AM)在聚乙烯醇交联微球(CPVA)表面的接枝聚合,制备了接枝微粒CPVA-g-PAM,重点研究了各种因素对接枝聚合的影响规律,探讨了铈盐引发接枝聚合的机理.实验结果表明,在Ce(Ⅳ)盐的氧化作用下,在含有大量羟基的CPVA微球表面会产生自由基,顺利地实现丙烯酰胺的自由基接枝聚合反应.PAM的接枝度首先取决于水介质中硫酸的浓度,接枝度随硫酸浓度的增大呈现先增大后减小的变化规律,当H+离子浓度为0.36mol/L时,PAM的接枝度最高,酸浓度对接枝度的影响反映了铈盐引发接枝聚合的微观机理.引发剂Ce4+盐的浓度过大,将会促进氧化终止过程,降低接枝度,适宜的Ce4+盐浓度为5.98×10-3mol/L.在接枝聚合过程中,单体丙烯酰胺浓度和反应温度也会对接枝聚合产生影响.在本研究所确定的适宜条件下,可制得PAM接枝度为27.13g/100g的接枝微粒CPVA-g-PAM.  相似文献   

9.
在紫外光作用下,二苯甲酮、蒽醌和安息香能通过夺氢反应使异戊二烯在四氟乙烯-丙烯共聚物中接枝,接枝反应按三重态自由基引发机理进行,接枝率随光照时间的增长而增加,但不会超过40%。和异戊二烯的自由基聚合反应不一样,接枝物中聚异戊二烯接枝链的微结构以3,4-和1,2-聚合为主,而前者以1,4-聚合为主。Ce+4及Fe+2-H2O2等氧化还原体系对该接枝反应不产生作用.极性溶剂四氢呋喃的加入,对接枝链微结构的影响很小。  相似文献   

10.
采用"接出(grafting from)"方式,在溶液聚合体系中将苯乙烯(St)接枝聚合在微米级硅胶表面,制备了接枝微粒PSt/SiO2;使用新型氯甲基化试剂1,4-二氯甲氧基丁烷,对接枝在硅胶表面的聚苯乙烯进行了氯甲基化(CM)反应,制得了氯甲基聚苯乙烯/硅胶(CMPS/SiO2)复合微粒.采用热重分析(TG)测定了PSt/SiO2的接枝度,并使用扫描电子显微镜(SEM)观察了其形貌;通过红外光谱法(FTIR)与佛尔哈德分析法表征了CMPS/SiO2的化学结构与组成.重点考察了各种因素对PSt/SiO2氯甲基化反应过程的影响规律.研究结果表明,CMPS/SiO2的制备不仅具有绿色环保的特点,而且反应容易控制.反应时间、溶剂种类与用量、催化剂种类与用量及氯甲基化试剂的用量等因素均会对该复合微粒的制备产生影响,如影响CMPS/SiO2的氯甲基化程度;抑制或促进已接枝的PSt大分子链之间通过Friedel-Crafts反应发生交联.若选用SnCl4为催化剂,以CH2Cl2为溶剂,在室温下反应10 h左右,可制得氯含量接近16 wt%(以接枝的PSt为基准计算)的CMPS/SiO2.  相似文献   

11.
The star-shaped poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (HPs-Star-PCL-b-PDMAEMA) was synthesized by ring-opening polymerization and reversible addition-fragmentation chain transfer (RAFT) polymerization. Star-shaped polycaprolactones (HPs-Star-PCL) were synthesized by the bulk polymerization of ε-caprolactone (CL) with a hyperbranched polyester initiator and tin 2-ethylhexanoate as a catalyst. The number-average molecular weight of these polymers linearly increased with the increase of the molar ratio of CL to hyperbranched initiator. HPs-Star-PCL was converted into a HPs-star-PCL-RAFT by an esterification of HPs-Star-PCL and 4-cyanopentanoic acid dithiobenzoate. Star amphiphilic block copolymer HPs-Star-PCL-b-PDMAEMA was obtained via RAFT polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA). The molecular weight distribution of HPs-Star-PCL-b-PDMAEMA was narrow. Furthermore, the micellar properties of HPs-Star-PCL-b-PDMAEMA in water were studied at various temperatures and pH values by means of dynamic light scattering (DLS). The results indicated that the star copolymers had the pH- and temperature-responsive properties. The release behaviors of model drug aspirin from the star polymer indicated that the rate of drug release could be effectively controlled by pH value and temperature.  相似文献   

12.
Poly(vinyl acetate) (PVAc) nanoparticles containing antibiotic have been prepared by miniemulsion polymerization. To compare the effect of hydrophobe types, hexadecane and poly(vinyl acetate) were used as hydrophobe. The particle characteristics as the manufacturing condition were examined by particle size analyzer. As a result, the diameter of PVAc latexes was adjusted between 80 and 260 nm by homogenization conditions and amounts of surfactant. Also, the miniemulsion by using hexadecane showed the more long shelf stability and led to the more small particle size after polymerization, as compared with the case of using poly(vinyl acetate). This indicated that the use of poly(vinyl acetate) as a hydrophobe could not make the stable emulsion, but it could avoid volatile organic chemical problems in the final product. From the release profile of drug through UV spectra, the drug release was very slow and it could be seen that the release of drug encapsulated with PVAc was occurred with the polymer degradation.  相似文献   

13.
The correlation between erosion and drug (lidocaine and 6‐mercaptopurine, 6‐MP) release from amorphous poly(thioether anhydrides), which are synthesized using radical‐mediated thiol‐ene polymerization, is reported. Cytotoxicity studies of the polymer toward human fibroblast human dermal fibroblasts adult, melanoma A‐375, and breast cancer MCF‐7 cells are conducted, and drug efficacy of a cancer and autoimmune disease drug (6‐MP) when released from the poly(thioether anhydrides) is examined against two cancerous cell types (A‐375 and MCF‐7). Erosion and drug release studies reveal that lidocaine release is governed by network erosion whereas 6‐MP is released by a combination of erosion and diffusion. The cytotoxicity studies show that all three cell types demonstrate high viability, thus cytocompatibility, to poly(thioether anhydrides). Toxicity to the material is dose dependent and comparable to other polyanhydride systems. The 6‐MP cancer drug is shown to remain bioactive after encapsulation in the poly(thioether anhydride) matrix and the polymer does not appear to modify the efficacy of the drug.  相似文献   

14.
Drug delivery systems are potential systems with ability to release drugs with a variety of mechanisms. Some mechanisms may consist of multiple steps, where the release rate of each step can vary from the others. Moreover, a drug release is a kinetic process intrinsically and the initial amount of the loaded drug may influence the amount of the release. Therefore, to achieve the desirable release, the loading and release processes should be investigated simultaneously, while researchers have considered these processes independently so far. Considering the fact that functional dependence between loading and release is not obvious, we proposed the combination of experimental design and powerful non-linear generalized artificial neural network (G-ANN) methods for the simultaneous optimization of these processes. Here, the functionalized PEGylated KIT-6 ([β-CD@PEGylated KIT-6]) NPs and curcumin were selected as a nano-carrier and drug, respectively. The curcumin release was optimized by G-ANN by considering the the feedback from the loading step. The obtained optimal parameters were as follows: (in the release process) 1.80 of the weight ratio of drug to nano-carrier, 5.70 of pH and 120 h of release time; and (in the loading process) 43 h of loading time and 2.2 of weight ratio of drug/nano-carrier.  相似文献   

15.
以反相乳液聚合得到了β-CD聚合物微球,对β-CD微球进行氯乙酰化改性后,利用原子转移自由基聚合的方法把聚甲基丙烯酸N ,N 二甲氨基乙酯(PDMAEMA)接枝到β-CD微球上,从而得到了具有温度和pH响应性的β- CD聚合物微球.通过红外光谱、元素分析确定了PDMAEMA接枝的β- CD微球的结构,采用热台偏光显微镜直接观测到了β- CD微球的温度和pH敏感性.对模型药物染料木素(GNT)和苯丁酸氮芥(CLB )进行了控制释放研究,结果表明pH值可对微球的“内环境”起到“开 关”作用,从而可构筑出一种新型的药物控制释放体系.  相似文献   

16.
The synthesis of polymer–drug conjugates from prodrug monomers consisting of a cyclic polymerizable group that is appended to a drug through a cleavable linker is achieved by organocatalyzed ring‐opening polymerization. The monomers polymerize into well‐defined polymer prodrugs that are designed to self‐assemble into nanoparticles and release the drug in response to a physiologically relevant stimulus. This method is compatible with structurally diverse drugs and allows different drugs to be copolymerized with quantitative conversion of the monomers. The drug loading can be controlled by adjusting the monomer(s)/initiator feed ratio and drug release can be encoded into the polymer by the choice of linker. Initiating these monomers from a poly(ethylene glycol) macroinitiator results in amphiphilic diblock copolymers that spontaneously self‐assemble into micelles with a long plasma circulation, which is useful for systemic therapy.  相似文献   

17.
Abstract

A series of tertiary amine containing PHMEMA-PEG-PHMEMA ABA triblock copolymers were synthesized by atom transfer radical polymerization (ATRP) using bromine-capped poly(ethylene glycol) (Br-PEG-Br) and 2-(hexamethyleneimino)ethyl methacrylate (HMEMA) as macro-initiator and monomers, respectively. The chemical structures and molecular weights of triblock copolymers were characterized by 1H NMR and gel permeation chromatography (GPC). The self-assembly behaviors of copolymers in different pH conditions were studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Triblock copolymers self-assembled into micelles in water (pH 7.4) and the micelles disassembled at acidic pH (pH 5.0). Anticancer drug doxorubicin (DOX) was used as a drug model and physically encapsulated into polymeric micelles. The drug release of DOX-loaded polymeric micelles was pH-responsive; the drug-loaded micelles that had higher contents of tertiary amine in polymer pendant groups showed faster release speed. In addition, the drug-loaded micelles showed excellent inhibition efficacy against HeLa cells in vitro.  相似文献   

18.
Here, we reported the synthesis of branched poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) via a combination of activator generated by electron transfer atom transfer radical polymerization (AGET ATRP) and self-condensing vinyl polymerization (SCVP) techniques. The typical linear kinetics of the AGET ATRP of DMAEMA with the initiation of 2-(2-bromoisobutyryloxy) ethyl methacrylate (BIEM) was observed. The molecular weight (Mn ) of the branched PDMAEMA increased with the monomer conversion. The GPC traces of these polymers were unimodal and the molecular weight distributions (Mw/Mn ) were in the range of 1.30–2.10. The degree of branching (DB) determined by NMR spectra agreed with theoretical value. The branched amphiphilic copolymer functionalized with azobenzene was then prepared via AGET ATRP chain-extension of branched PDMAEMA with azobenzene monomer, 6-[4-(4-methoxyphenylazo)phenoxy]hexyl(meth)acrylate as the second monomer. The GPC traces of these branched copolymers showed the mono-peaks, which proved the successful preparation of copolymers. The properties of this branched copolymer in controlling drug release were also investigated. It was found that the drug release rate of chlorambucil can be controlled by various factors, such as polymer structure, light, temperature and pH values.  相似文献   

19.
Environmental switches may be fabricated for the controlled release of pharmaceutical drug using a thermally responsive polymer with the intrinsic chemical and physical nature of stimuli‐sensitive smart materials. Particularly, much attention has been paid to the biomedical applications of poly(N‐isopropyl acrylamide) (PNIPAAm) because of its unique reversible transition at a specific lower critical solution temperature (LCST).Thermally sensitive block copolymers, poly(N‐isopropyl acrylamide‐b‐poly(L ‐lactide‐co‐glycolide) (PNIPAAm‐b‐PLGA), and polyethylene glycol‐poly (lactide‐co‐glycolide) (PEG‐PLGA) triblock copolymers with different compositions and length of PLGA block were synthesized via ring‐opening polymerization of lactide and glycolide in the presence of OH‐terminated PNIPAAm or PEG. The composition and structure of the polymer were determined by NMR and FTIR. The effect of important factors, such as ionic strength, pH, and polymer concentration on the phase transition behavior of temperature‐sensitive polymers, were investigated by cloud point measurements. The resulting thermosensitive polymers were used for the entrapment of a narcotic antagonist drug, naltrexone, as the model drug. The loading efficiency and drug release behavior of naltrexone‐loaded hydrogels were investigated. The naltrexone loaded thermosensitive polymers were able to sustain the release of naltrexone for different periods of time, depending on the polymer composition, and concentration. In vitro release studies showed that these thermosensitive polymers are able to deliver naltrexone in biologically active forms at a controlled rate for 3–8 weeks. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Because of the fundamental importance of new therapeutic routes for cancer treatment, a number of systems based on colloidal particles as vehicles for the delivery of chemotherapeutic agents have been devised. The target is always to provide the proper dose of the antitumour agent only at the desired locus of action, thus reducing the unwanted side effects. The systems studied in this work are nanospheres of the biodegradable polymers poly(ethyl-2-cyanoacrylate), poly(butylcyanoacrylate), poly(hexylcyanoacrylate) and poly(octylcyanoacrylate), all suitable for parenteral administration, as vehicles for 5-fluorouracil, a well studied drug used for the treatment of solid tumours. Two loading methods have been analyzed: the first one is based on drug addition during the process of generation of the particles, by an anionic emulsion/polymerization procedure, and the subsequent drug trapping in the polymeric network. The second method is based on surface adsorption in already formed nanoparticles, after incubation in the drug solution. A detailed investigation of the capabilities of the polymer particles to load this drug is described. The main factors determining the drug incorporation to the polymer network were the type of monomer, the pH and the drug concentration. The release kinetics of 5-fluorouracil is found to be controlled by the pH of the release medium, the type of drug incorporation and the type of polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号