首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
烷基聚葡糖苷溶液的表面吸附平衡与动力学   总被引:3,自引:0,他引:3  
用吊片法和气泡最大压力法分别测定了烷基聚葡糖苷(APG)C9.6G1.3水溶液的平衡和动态表面张力,研究了APG水溶液表面的吸附平衡、动力学及其影响因素.测得其cmc(临界胶束浓度)为0.032g/L.吸附过程由初始的扩散控制转变到势垒控制,吸附势垒为4~7kJ/mol.温度升高,平衡和动态表面张力均减小,吸附量增加;加入无机盐,平衡和动态表面张力增大,吸附量亦增加;醇类的吸附使动态表面张力下降速率加快,表明APG与醇分子间有协同吸附作用.  相似文献   

2.
烷基聚葡糖苷溶液的表面吸附平衡的动力学   总被引:1,自引:0,他引:1  
用吊片法和气泡最大压力法分别测定了烷基聚葡糖苷(APG)C9.6G1.3水溶液的平衡和动态表面张力,研究了APG水溶液表面的吸附平衡、动力学及其影响因素。测得其cmc(临界胶束浓度)为0.032g/L。吸附过程由初始的扩散控制转变到势垒控制,吸附势垒为4-7kJ/mol。温度升高,平衡和动态表面张力均减小,吸附量增加;加入无机盐,平衡和动态表面张力增大,吸附量亦增加;醇类的吸附使动态表面张力下降速度加快,表明APG与醇分子间有协同吸附作用。  相似文献   

3.
使用最大气泡法测定了十八烷基二甲基氯化铵(C_(18)DAC)水溶液的动态表 面张力,考察了浓度、温度等对其DST的影响,详细表征了DST随时间的变化过程, 计算了动态表面张力的各种参数(n,t_i,t~*,t_m,R_(1/2))。结合Word- Tordai方程计算了表观扩散系数(D_a)和吸附势垒(E_a),对其吸附动力学模式 进行了研究,探讨了DST参数的物理意义。结果表明,t~*值越小,吸附势垒E_a越 大,宏观扩散系数D_a越小,表面活性剂分子越不易吸附在溶液表面;C_(18)DAC低 浓度时吸附属于扩散控制模式,高浓度时属于混合控制模式;高浓度时,在吸附初 期(t → 0)为扩散控制模式,吸附后期(t → ∞)为混合控制模式。  相似文献   

4.
用最大泡压法分别测定了聚二甲基二烯丙基氯化铵,十六烷基三甲基溴化铵以及两者混合物水溶液的动表面张力。十六烷基三甲基溴化铵的吸附服从扩散-动力学控制机理。发现聚二甲基二烯丙基氯化铵水溶液的表面张力具有独特的时间相关性。吸附的前期服从扩散控制机理,而在吸附的后期,即接近吸附平衡时服从扩散-动力学控制机理。混合物水溶液的整个吸附过程受扩散控制。  相似文献   

5.
使用最大气泡法测定了十八烷基二甲基氯化铵(C_(18)DAC)水溶液的动态表 面张力,考察了浓度、温度等对其DST的影响,详细表征了DST随时间的变化过程, 计算了动态表面张力的各种参数(n,t_i,t~*,t_m,R_(1/2))。结合Word- Tordai方程计算了表观扩散系数(D_a)和吸附势垒(E_a),对其吸附动力学模式 进行了研究,探讨了DST参数的物理意义。结果表明,t~*值越小,吸附势垒E_a越 大,宏观扩散系数D_a越小,表面活性剂分子越不易吸附在溶液表面;C_(18)DAC低 浓度时吸附属于扩散控制模式,高浓度时属于混合控制模式;高浓度时,在吸附初 期(t → 0)为扩散控制模式,吸附后期(t → ∞)为混合控制模式。  相似文献   

6.
含氟表面活性剂溶液的动态表面张力研究   总被引:1,自引:0,他引:1  
本文研究了阳离子氟表面活性剂CF3CF2CF2O(CF(CF3)CF2O)2CF(CF3)CONH(CH2)3N+(C2H5)2CH3I-(简写FC-4 )的动态表面性质,利用Krüss K12和MBP动态表面张力仪分别测定了该体系的平衡表面张力和动态表面张力。由平衡表面张力测定结果得到了临界胶束浓度和表面吸附量。利用渐进的Ward and Tordai方程对动态数据进行了分析。结果表明:在吸附的最初阶段符合扩散控制模型,而在吸附的后期,证明了吸附势垒的存在,表明在吸附后期属于混合动力学模型。计算得出25 ℃时,该体系势垒约在25到35 kJ/mol. 由于氟表面活性剂分子间作用力小,表面压是导致吸附势垒的主要原因。  相似文献   

7.
利用MPTC型气泡压力张仪研究了十二烷基硫酸钠(SDS)溶液在不同NaCl 浓度下的动态表面吸附性质, 分析了离子型表面活性剂在表面吸附层和胶束中形成双电层结构产生表面电荷对动态表面扩散过程和胶束性质的影响. 结果表明, SDS在表面吸附过程中, 表面电荷的存在会产生5.5 kJ·mol-1的吸附势垒(Ea), 显著降低十二烷基硫酸根离子(DS-)的有效扩散系数(Deff). 十二烷基硫酸根离子的有效扩散系数与自扩散系数(D)的比值(Deff/D)仅为0.013, 这表明SDS与非离子型表面活性剂不同, 在吸附初期为混合动力控制吸附机制. 加入NaCl可以降低吸附势垒. 当加入不小于80 mmol·L-1 NaCl后, Ea小于0.3 kJ·mol-1, Deff/D在0.8-1.2之间, 表现出与非离子型表面活性剂相同的扩散控制吸附机制. 同时, 通过分析SDS胶束溶液的动态表面张力获得了表征胶束解体速度的常数(k2). 发现随着NaCl 浓度的增大, k2减小, 表明SDS胶束表面电荷的存在会增加十二烷基硫酸根离子间的排斥力, 促进胶束解体.  相似文献   

8.
莫春生  黄振中  衷明华 《化学学报》2001,59(10):1566-1571
用最大泡压法测定了不同温度下浓度低于cmc时十六烷基三甲基溴化铵水溶液的动态表面张力.发现当浓度低于0.10 mol·m-3时动态吸附量ΓT遵s从由Henry吸附等温式导出的动态表面状态方程.在浓度位于0.10至0.80mol·m-3的较大范围内,Tt遵从从Langmuir等温式导出的动态表面状态方程.在吸附的后期十六烷基三甲基溴化铵分子在溶液表面上的吸附遵从混合动力学控制机理.从表观扩散系数计算出吸附为混合动力学控制机理时吸附能垒为6.7~7.1 kJ·  相似文献   

9.
采用水溶液均聚合方法,制备了阳离子型表面活性单体(2-丙烯酰胺基)乙基十四烷基二甲基溴化铵(AMC14AB)的均聚物,使用荧光探针法、表面张力测定及电导测定法,重点考察了均聚物P(AMC14AB)在水溶液中的胶束化行为与表面吸附现象.在水溶液中,均聚物P(AMC14AB)呈现单分子链胶束的聚集形态,具有零临界胶束浓度(CMC=0),从开始加入P(AMC14AB)起,水溶液中随即产生单分子链胶束,不存在Krafft温度.P(AMC14AB)在溶液表面也发生表面吸附,使水的表面张力下降,即P(AMC14AB)也具有表面活性;随着浓度增大,表面吸附量增大,水的表面张力持续下降;当表面吸附达到饱和时,表面张力一浓度曲线上出现突变点,该点应该定义为饱和的表面吸附浓度(SSAC),而不应该再称为临界胶束浓度.P(AMC14AB)单分子链胶束溶液对疏水有机物(甲苯)的增溶情况,明显不同于普通小分子表面活性剂十六烷基二甲基溴化铵(CTAB)的多分子胶束溶液,甲苯增溶量-P(AMC14AB)浓度的关系曲线上无突变点,而且对甲苯的增溶能力高于CTAB的多分子胶束溶液.  相似文献   

10.
为了确定重组类人胶原蛋白Ⅱ(Recombinant human-like collagen,RHLC Ⅱ)在CM52树脂上的动力学行为,考察温度、初始浓度等因素的影响,分别采用简单线性推动力模型(液膜扩散控制时)和均相扩散模型(颗粒扩散控制时)研究RHLC Ⅱ在不同工艺条件下的反应速率,确定离子交换过程的速率控制步骤,并计算模型参数.结果表明,(1)速率控制机理受转速和料液初始浓度的影响,在转速和料液初始浓度较低时,为液膜扩散控制(Film Diffusion Control,FDC);反之,则为颗粒扩散控制(Particle Diffusion Control,PDC);(2)以简单线性推动力模型拟合液膜扩散控制时的动力学数据,其线性关系良好,模型准确度较高;对于颗粒扩散控制的吸附,则以均相扩散模型拟合,求出有效扩散系数,模型较好地描述了CM52对RHLC Ⅱ的PDC吸附.(3)对于FDC,温度越高,溶液浓度越大,搅拌转速越高,外扩散速度常数越大,吸附越快;对于PDC,温度升高,有效扩散系数增大,吸附加快,料液浓度对有效扩散系数的影响不显著.  相似文献   

11.
YalÇin  Mehmet  GÜrses  Ahmet  Doğar  Çetin  SÖZBİLİr  Mustafa 《Adsorption》2005,10(4):339-348
This study investigates the adsorption kinetics of CTAB (cethyltrimethylammonium bromide), a cationic surfactant, onto PAC from aqueous solution with respect to the initial CTAB concentration at 20C. The pseudo-first-order, second-order kinetic models and intraparticle diffusion model were used to describe the kinetic data and the rate constants were calculated. The rate parameter, ki, of intraparticle diffusion, the rate parameter, k2, of the pseudo-second-order and k1, the rate parameter for the pseudo-first-order mechanism were compared. It was found that the pseudo-second-order adsorption mechanism is predominant and the overall rate of the CTAB adsorption process appears to be controlled by more than one step, namely both the external mass transfer and intraparticle diffusion mechanisms.  相似文献   

12.
In this study, granular activated carbon (GAC) coated with cetyltrimethyl ammonium bromide (CTAB) (GAC-CTAB) was synthesized to remove perchlorate from water via adsorption. Laboratory-scale batch experiments were performed to study the factors affecting the perchlorate adsorption by GAC-CTAB, including the CTAB content and solution pH, and explore the mechanisms behind the adsorption phenomenon. The novel GAC-CTAB material was characterized by scanning electron microscopy (SEM), zeta potential measurement and Brunauer-Emmett-Teller (BET) analysis. The characterization tests showed that CTAB was deposited on the GAC surface, pH(pzc) of the material was between 2.0 and 3.0, and the BET specific surface area was reduced from 925 to 729 m(2)/g with the increasing CTAB content from 0 to 0.034 mmol CTAB/g GAC. The adsorption process was better described by a pseudo-second-order kinetics model and the Freundlich adsorption model. The CTAB content and solution pH significantly influenced the kinetics and chemical equilibrium of the adsorption. When the CTAB content was increased from 0.0.023 to 0.135 mmol CTAB/g GAC, the K in the Freundlich adsorption isotherm increased from 0.071 to 0.19 mmol/g. The optimal adsorption typically occurred at pH 2-3, close to the pH(pzc) of the solution. Finally, the mechanisms for the adsorption of perchlorate on GAC-CTAB were associated with surface complexation, electrostatic interaction and ion exchange.  相似文献   

13.
The adsorption of erbium (Er) ions on activated charcoal (AC) is investigated at temperatures 10–40 °C from aqueous solutions to understand the kinetics behavior. The intra-particle diffusion, the pseudo-first order kinetic and pseudo-second order kinetic models were used to describe the kinetic data. Results shows that the adsorption of Er ions on AC occurs in two stages and the surface adsorption and diffusion phenomena are operative in the adsorption process. The result also reveals that intra-particle diffusion is not only the main rate determining step through out the adsorption process, but the boundary layer diffusion also play significant role in rate determination. Values of the intra-particle diffusion rate constant and the extent of the boundary layer diffusion were calculated. A comparison of the kinetics models on the overall adsorption rate indicates that the Er/AC system is best described by the pseudo-second order kinetic model than the pseudo-first order model, and the overall rate of the Er ions adsorption on AC appears to be controlled by more than one step, i.e., external mass transfer and diffusion mechanism.  相似文献   

14.
The slow stage of phosphate or arsenate adsorption on hydrous metal oxides frequently follows an Elovich equation. The equation can be derived by assuming kinetic control by either a diffusion process (either interparticle or intraparticle) or a heterogeneous surface reaction. The aim of this study is to determine whether the slow stage of arsenic adsorption on goethite is more consistent with diffusion or heterogeneous surface reaction control. Adsorption kinetics of arsenate and dimethylarsinate (DMA) on goethite (alpha-FeOOH) were investigated at different pH values and inert electrolyte concentrations. Their adsorption kinetics was described and compared using Elovich (Gamma vs ln time) plots. Desorption of arsenate and DMA was studied by increasing the pH of the suspension from pH 4.0 to pH 10.0 or 12.0. The effective particle sizes and zeta-potential of goethite were also determined. Effective particle size increased rapidly as the pH approached pH(IEP), both in the absence and presence of arsenic. Inert electrolyte concentrations and pH had no effect on the slow stage of arsenate adsorption on goethite, while the kinetics of DMA adsorption on goethite was influenced by both parameters. The slow stage of arsenate adsorption on goethite follows an Elovich equation. Since effective particle size changes with both pH and inert electrolyte concentrations, and effective particle size influences interparticle diffusion, the arsenate adsorption kinetics indicate that the slow adsorption step is not due to interparticle diffusion. DMA also has complex adsorption kinetics with a slow adsorption stage. DMA desorbed completely and rapidly when the pH was raised, in contrast to the slow adsorption kinetics, indicating that the slow adsorption step is not due to intraparticle diffusion. The slow adsorption is not the result of diffusion, but rather is due either to the heterogeneity of the surface site bonding energy or to other reactions controlling arsenic removal from solution.  相似文献   

15.
Kinetic modeling of liquid-phase adsorption of phosphate on dolomite   总被引:2,自引:0,他引:2  
The adsorption of phosphate from aqueous solution on dolomite was investigated at 20 and 40 degrees C in terms of pseudo-second-order mechanism for chemical adsorption as well as an intraparticle diffusion mechanism process. Adsorption was changed with increased contact time, initial phosphate concentration, temperature, solution pH. A pseudo-second-order model and intraparticle diffusion model have been developed to predict the rate constants of adsorption and equilibrium capacities.The activation energy of adsorption can be evaluated using the pseudo-second-order rate constants. The adsorption of phosphate onto dolomite are an exothermically activated process. A relatively low activation energy and a model highly fitting to intraparticle diffusion suggest that the adsorption of phosphate by dolomite may involve not only physical but also chemisorption. This was likely due to its combined control of chemisorption and intraparticle diffusion. However, for phosphate/dolomite system chemical reaction is important and significant in the rate-controlling step, and for the adsorption of phosphate onto dolomite the pseudo-second-order chemical reaction kinetics provides the best correlation of the experimental data.  相似文献   

16.
利用大孔吸附树脂Amberlite XAD16及HZ816对红霉素的吸附动力学实验,研究了温度、初始浓度、溶液pH值及搅拌速度等因素对吸附过程的影响.结果表明,Amberlite XAD16及HZ816对红霉素的吸附速率符合一级吸附动力学方程及颗粒内扩散方程,过程受液膜扩散阻力及颗粒内扩散阻力共同影响.同时,表观吸附速率常数与颗粒内扩散速率常数均随着温度的升高而增大,随着初始浓度的增大而增大,随着溶液pH值增大而增大,随着搅拌速度加快而增大.  相似文献   

17.
本文运用循环伏安方法研究十六烷基三甲基溴化铵(CTAB)在Au(111)电极上的吸附行为. 首次给出CTAB在Au(111)电极上的循环伏安曲线,其0.18 V、0.27 V有两对可逆的特征电流尖峰,均受扩散控制,且与卤素离子种类有关. 研究表明,烷基铵阳离子的吸脱附及吸附层相转变与Au(111)电极表面结构密切相关.  相似文献   

18.
The decomposition of ethene on the Pd(111) surface was studied at effective pressures in the 10(-8) to 10(-7) mbar range and at sample temperatures between 300 and 700 K, using an effusive capillary array beam doser for directional adsorption, LEED, AES, temperature programmed reaction, and TDS. In the temperature range of 350-440 K increasingly stronger dehydrogenation of the ethene molecule is observed. Whereas at 350 K an ethylidyne adlayer is still present after adsorption, already at temperatures around 440 K complete coverage of the surface by carbon is attained, while the bulk still retains the properties of pure Pd. Beyond 440 K a steady-state surface C coverage is established, which decreases with temperature and is determined by detailed balancing between the ethene gas-phase adsorption rate and the migration rate of carbon into the Pd bulk. This process gives rise to the formation of a "partially carbon-covered Pd(x)C(y) surface". Above 540 K the surface-bulk diffusion of adsorbed carbon becomes fast, and in the UHV experiment the ethene adsorption rate becomes limited by the ethene gas-phase supply. The carbon bulk migration rate and the steady-state carbon surface coverage were determined as a function of the sample temperature and the ethene flux. An activation energy of 107 kJ mol(-1) for the process of C diffusion from surface adsorption sites into the subsurface region was derived in the temperature range of 400-650 K by modeling the C surface coverage as a function of temperature on the basis of steady-state reaction kinetics, assuming a first-order process for C surface-subsurface diffusion and a second-order process for C(ads) formation by dissociative C2H4 adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号