首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic field-effect transistors (OFETs) fabricated with vapor-deposited films of 1-imino nitroxide pyrene show excellent p-type FET characteristics, with mobility up to 0.1 cm2 V-1 s-1 and an on/off ratio of nearly 5 x 104. Most remarkable feature of the FETs is their low operating voltage due to the low threshold voltage (about -0.6 V) and inverse subthreshold slope (about 540 mV decade-1).  相似文献   

2.
Truman P  Uhlmann P  Stamm M 《Lab on a chip》2006,6(9):1220-1228
A novel single silicon thin film field-effect-transistor (FET) is developed for use as a sensor to monitor transport and chemical properties of liquids in microfluidic systems. The sensor elements which are compatible with existing (bio-)chemical sensor schemes based on ion-sensitive-field-effect-transistors (ISFET) can detect capillary filling speed and level in aqueous solutions. Using a transitor based detection scheme, this approach has the potential to enable high speed flow detection on large scales with high spatial resolution. The prototype devices presented in the present study have been fabricated by using a simple cost-efficient route for circuit board lithography. The thin film FET device characteristics are discussed and a theoretical model for liquid transport detection based on FETs is developed. Typical experimental data are also presented.  相似文献   

3.
Dam TV  Pijanowska D  Olthuis W  Bergveld P 《The Analyst》2003,128(8):1062-1066
In this paper, glucose is potentiometrically measured by using a specific field effect transistor, the EMOSFET. In this device, glucose oxidase is immobilized within a bovine serum albumin matrix, using glutaraldehyde. This layer is deposited on the top of an electroactive Os-polyvinylpyridine layer containing horseradish peroxidase, which is used as the gate material of the FET. The basic principle of the sensor is to measure the glucose concentration by means of measuring the change in the work function of the electroactive gate due to its redox reaction with the H2O2, generated by the reaction between glucose and glucose oxidase. The change in the work function can be detected as a change in the threshold voltage of the FET. Moreover, a measuring mode called "constant current potentiometry" has been applied to improve the sensitivity of the sensor. The sensitivity of the sensor working in this mode is found to be much higher than the Nernstian value. The experimental results show that the detection limit of the sensor can be tuned depending on the value of the applied current and the glucose oxidase concentration in the gate.  相似文献   

4.
Organic-inorganic hybrid perovskite methylammonium lead iodide (CH3NH3PbI3) generally tends to show n-type semiconductor properties. In this work, a field-effect transistor (FET) device based on a CH3NH3PbI3 single crystal with tantalum pentoxide (Ta2O5) as the top gate dielectric was fabricated. The p-type field-effect transport properties of the device were observed in the dark. The hole mobility of the device extracted from transfer characteristics in the dark was 8.7×10-5 cm2·V-1·s-1, which is one order of magnitude higher than that of polycrystalline FETs with SiO2 as the bottom gate dielectric. In addition, the effect of light illumination on the CH3NH3PbI3 single-crystal FET was studied. Light illumination strongly influenced the field effect of the device because of the intense photoelectric response of the CH3NH3PbI3 single crystal. Different from a CH3NH3PbI3 polycrystalline FET with a bottom gate dielectric, even with the top gate dielectric shielding, light illumination of 5.00 mW·cm-2 caused the hole current to increase by one order of magnitude compared with that in the dark (VGS (gate-source voltage)=VDS (drain-source voltage)=20 V) and the photoresponsivity reached 2.5 A·W-1. The introduction of Ta2O5 as the top gate dielectric selectively enhanced hole transport in the single-crystal FET, indicating that in the absence of external factors, by appropriate device design, CH3NH3PbI3 also has potential for use in ambipolar transistors.  相似文献   

5.
Conventional gate oxide layers (e.g., SiO(2), Al(2)O(3), or HfO(2)) in silicon field-effect transistors (FETs) provide highly active surfaces, which can be exploited for electronic pH sensing. Recently, great progress has been achieved in pH sensing using compact integrateable nanowire FETs. However, it has turned out to be much harder to realize a true reference electrode, which--while sensing the electrostatic potential--does not respond to the proton concentration. In this work, we demonstrate a highly effective reference sensor, a so-called reference FET, whose proton sensitivity is suppressed by as much as 2 orders of magnitude. To do so, the Al(2)O(3) surface of a nanowire FET was passivated with a self-assembled monolayer of silanes with a long alkyl chain. We have found that a full passivation can be achieved only after an extended period of self-assembling lasting several days at 80 °C. We use this slow process to measure the number of active proton binding sites as a function of time by a quantitative comparison of the measured nonlinear pH-sensitivities to a theoretical model (site-binding model). Furthermore, we have found that a partially passivated surface can sense small changes in the number of active binding sites reaching a detection limit of δN(s) ≈ 170 μm(-2) Hz(-1/2) at 10 Hz and pH 3.  相似文献   

6.
A reusable extended-gate field-effect transistor (FET) sensor with an 11-ferrocenyl-1-undecanethiol (11-FUT) modified gold electrode was developed for applying to enzyme immunoassay. It was found that the 11-FUT modified FET sensor detected a thiol compound 50 times or more repeatedly after a treatment with a 5% hydrogen peroxide solution. The gate-voltage shift of the FET sensor showed a fairly good linearity (R(2) = 0.998) within a range from 10(-2) to 10(-6) M on the concentration of 6-hydroxyl-1-hexanethiol, which is a thiol compound, at a Nernstian response of 58.5 mV/decade. The FET-based immunoassay was constructed by combining the 11-FUT modified-FET sensor with the enzyme-linked immunosorbent assay (ELISA), in which the enzyme chemistry of acetylcholinesterase (AChE) was used to generate a thiol compound. The 11-FUT modified FET sensor with an AC voltage at 1 MHz superimposed onto the reference electrode detected the AChE-catalyzed product corresponding to a serum concentration of interleukin 1beta from 10 to 5000 pg/mL. In addition, all measurements were successfully performed by using the same FET-sensor chip after a treatment with a 5% hydrogen peroxide solution.  相似文献   

7.
多壁碳纳米管的掺氮改性及场效应管特性研究   总被引:1,自引:0,他引:1  
以二茂铁为前驱体, 提供催化剂与部分碳源, 三聚氰提供氮源与另外一部分碳源, 在硅基底上制备出了碳纳米管阵列. 碳纳米管为多壁结构, 单根碳纳米管的平均直径为50 nm. 碳纳米管的X射线光电子谱(XPS)在398.4 eV处出现特征峰, 表明为氮掺杂的碳纳米管. 用其制备的场效应管在室温大气环境下稳定地表现为n型场效应特性, 并且具有非常低的关闭状态电流(off-state current)以及良好的负门电压对漏极电流的抑制作用, 单位源漏偏压下漏极电流为100 pA量级. 实验中采用了源/漏电极不对称的绝缘层结构, 使得门电压对源漏两极的电场调制也不对称, 从而实现了对漏电极的门电压调制.  相似文献   

8.
Electronic transport has been studied by measuring the characteristics of field effect transistors using high purity perylene and the results have been compared with those from time-of-flight measurements. The purity of the material has been monitored by carrier trapping time and delayed fluorescence lifetime. Three types of field effect transistors have been studied: (1) thin film transistor, (2) transistor prepared by placing a single crystal flake on a substrate and (3) transistor fabricated on a single crystal by depositing electrodes and insulating layer onto it. Compared to thin film transistors prepared by evaporating perylene onto a SiO2/Si substrate, higher mobility values were obtained with transistors using single crystals, but the electrical characteristics of the transistors were far from ideal: large threshold gate voltage observed in the second class of FETs indicated that a high density of traps are present at the interface between the organics and the insulator. A transistor of the third class showed that it functioned indeed as a FET with a reasonably high mobility, but the operation was not stable enough to allow reliable measurements. Much remains to be improved in the design and construction of a perylene FET before the potentiality of the material is fully developed. Also, it remains to be explored to what extent the bulk purity and the molecular order at the organics/insulator interface influence the transport of the charge carriers in an organic FET.  相似文献   

9.
We designed acene molecules attached to two semi-infinite metallic electrodes to explore the source-drain current of graphene and the gate leakage current of the gate dielectric material in the field-effect transistors (FETs) device using the first-principles density functional theory combined with the non-equilibrium Green's function formalism. In the acene-based molecular junctions, we modify the connection position of the thiol group at one side, forming different electron transport routes. The electron transport routes besides the shortest one are defined as the cross channels. The simulation results indicate that electron transport through the cross channels is as efficient as that through the shortest one, since the conductance is weakly dependent on the distance. Thus, it is possible to connect the graphene with multiple leads, leading the graphene as a channel utilized in the graphene-based FETs in the mesoscopic system. When the conjugation of the cross channel is blocked, the junction conductance decreases dramatically. The differential conductance of the BA-1 is nearly 7 (54.57 μS) times as large as that of the BA-4 (7.35 μS) at zero bias. Therefore, the blocked graphene can be employed as the gate dielectric material in the top-gated graphene FET device, since the leakage current is small. The graphene-based field-effect transistors fabricated with a single layer of graphene as the channel and the blocked graphene as the gate dielectric material represent one way to overcome the problem of miniaturization which faces the new generation of transistors.  相似文献   

10.
Field-effect transistors (FETs) are one of the most widely-used electronic sensors for continuous monitoring and detection of contaminants such as pharmaceuticals and endocrine-disrupting compounds at low concentrations. FETs have been successfully utilized for the rapid analysis of these environmental pollutants due to their advantageous material properties like the disposability, rapid responses and simplicity. This paper presented an up-to-date overview of applied strategies with different bio-based materials in order to enhance the analytical performances of the designed sensors. Comparison and discussion were made between characteristics of recently engineered FET bio-sensors used for the detection of famous and selected pharmaceutical compounds in the literature. The recent progress in environmental research applications, comments on interesting trends, current challenge for future research in endocrine-disrupting chemicals’ (EDCs) detection using FETs biosensors were highlighted.  相似文献   

11.
A field effect transistor (FET)-based glucose sensor was fabricated. As a totally synthetic and thus stable glucose-sensing moiety, 3-acrylamidophenylboronic acid was chemically introduced onto the FET gate surface in the form of a thin copolymer gel layer. Excellent transistor characteristics were confirmed even after the surface modification, ensuring validity of the modification procedure herein developed. Glucose-induced changes in the FET’s electric characteristics were obtained in quantitative as well as reversible manners. It was also demonstrated that the prepared FET is able to continuously perceive the change in the glucose concentration in the milieu. The detected signals were attributed to the faction change of the gate-introduced phenyborate anions, also presumably involving other parameter changes such as permittivity and conductivity. The use of the fabricated FET could further be extended to the construction of stable, readily minutualizable, and label-free carbohydrate molecule-sensing systems.  相似文献   

12.
The pH response of a pH-sensitive field-effect transistor (FET) is not affected by a ca. 1-μm thick membrane formed from λ-aminopropyltriethoxysilane and glutaraldehyde over the gate insular by a vapor deposition method. The response between pH 5.5 and 8.5 is ca. 61 mV pH?1 at 37°C in 5 mM Tris-HCl buffer. When urease is immobilized on the membrane, the sensor gives a linear relationship between the initial rate of the output gate voltage change and the logarithmic value of urea concentration between 16.7 and 167 mM. Determination of urea is possible within 30 s. The optimum pH is 6.0–6.5, at 37°C. The system can be used for 20 days with only slight loss of enzymatic activity.  相似文献   

13.
Two cyclic carbazolenevinylene dimers 1 and 2 were synthesized by McMurry coupling reactions. A linear compound 3 was also prepared for comparison. Compounds 1-3 were fully characterized by means of NMR spectroscopy, HRMS, elemental analysis, and UV/Vis absorption spectroscopy. Quantum chemical simulations showed that the cyclic compounds possessed smaller HOMO-LUMO gaps and more extended conjugation. The UV/Vis absorption spectra of the cyclic compounds showed blueshifts compared with that of the linear compound 3. Time-dependent DFT (TD-DFT) analysis revealed that this was due to the different selection rules for molecules with cyclic and linear architectures. The cyclic conformation also significantly affected the molecular ordering in the solid state. The X-ray crystal structure of 1 showed partial pi-pi overlapping between the adjacent molecules. Thin films of 1-3 were fabricated by the vacuum-deposition method on Si/SiO(2) substrates. Multicrystalline thin films were obtained from compounds 1 and 2, but only amorphous thin films could be obtained for the linear compound 3. Another important difference between the cyclic and linear compounds was the reduced reorganization energy for the cyclic compounds. These two facts have resulted in improved field-effect transistor (FET) mobilities for the cyclic compounds compared with the linear compound. In addition, as the substrate temperature has a significant influence on the morphology and the degree of crystallinity of the thin films deposited, the device performance could be optimized by varying the substrate temperature. The FET devices based on 2 gave the highest mobility of 0.013 cm(2) V(-1) s(-1). The results showed that carbazole derivatives with cyclic structures might make better FETs.  相似文献   

14.
The operation of an ambipolar field‐effect transistor (FET) is described using a simple diagram depicting the gate voltage and channel potential profile relative to the injection threshold voltage of charge carriers. From this diagram, the transition between transistor‐operation regimes and the resulting current–voltage relations can be easily understood. Also, a practical guidance for the operation of an ambipolar FET is provided. In particular, conditions to achieve the true ambipolar regime, which is of particular interest for light‐emitting transistor operation, and a correct method to extract electron and hole mobilities from a given current–voltage curve are presented.  相似文献   

15.
We have demonstrated a single molecule field effect transistor (FET) which consists of a redox molecule (perylene tetracarboxylic diimide) covalently bonded to a source and drain electrode and an electrochemical gate. By adjusting the gate voltage, the energy levels of empty molecular states are shifted to the Fermi level of the source and drain electrodes. This results in a nearly 3 orders of magnitude increase in the source-drain current, in the fashion of an n-type FET. The large current increase is attributed to an electron transport mediated by the lowest empty molecular energy level when it lines up with the Fermi level.  相似文献   

16.
A glucose-sensitive field-effect transistor (FET) with a two-enzyme membrane containing gluconolactonase and glucose oxidase is investigated. The two-enzyme membrane (ca. 1 μm thick) is formed on the ion-sensitive gate of the FET by photopolymerization. The gluconolactonase used was a partially purified product prepared from crude glucose oxidase by gel filtration. A glucose sensor with only purified glucose oxidase has little response for glucose, but the co-immobilization of gluconolactonase and glucose oxidase considerably enhanced the response amplitude of the glucose sensor. The composition of the two-enzyme/photopolymer solution is optimized; gluconolactonase with an activity at least twice that of glucose oxidase is necessary. The linear calibration graph extends from 0.2 to 2 mM glucose.  相似文献   

17.
《Analytical letters》2012,45(15):2983-2995
Abstract

An immunosensor method for determination of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was developed. It is based on the use of the competition between 2,4-D in analyzed probes and 2,4-D-peroxidase conjugate for binding with antibodies being immobilized on porous photo-activated cellulose membranes. These membranes were attached to the gate region of pH-sensitive field transistor (FET) and electrochemical detection of enzyme activity was carried out. Mixture of ascorbic acid (0.1 mM), o-phenylenediamine (1.0 mM), hydrogen peroxide (1.0 mM) was used as substrate solution. The initial rate of pH-shift of the FETs gate region was recorded as measured parameter.

The developed system permits to determine 2,4-D in water solutions for concentrations down to 1 ng/ml. This portable and inexpensive immunosensor meets modern requirements as analytical system for ecological monitoring.  相似文献   

18.
Silicon nanowires (Si NWs) modified by covalent Si-CH3 functionality, with no intervening oxide, show atmospheric stability, high conductance values, low surface defect levels, and allow for the formation of air-stable Si NW Field-Effect Transistors (FETs) having on-off ratios in excess of 105 over a relatively small gate voltage swing (+/-2 V).  相似文献   

19.
Field-effect transistors (FETs) have been fabricated using double-walled carbon nanotubes (DWCNTs), and electrical transport measurements have been carried out on 125 DWCNT FETs. Among these devices, 52 were found to show basically semiconducting field-effect characteristics, 44 show metallic characteristics, and 29 show neither pure semiconducting nor metallic characteristics. These 3 distinct types of field-effect characteristics were identified as resulting from the semiconducting (S)-S, metallic (M)-M or M-S, and S-M combinations of the two shells of the DWCNT. While the S-S and M-M or M-S DWCNT devices exhibit similar field-effect characteristics to those by single-walled carbon nanotube (SWCNT) devices, the S-M device responds uniquely to the external gate voltage. In particular, it was found that free charges in the inner metallic shell may screen the outer semiconducting shell from the gate effect and that the screening is directly related to the intershell interaction, which increases with increasing temperature and tube diameter. The screening is disadvantageous to the performance of DWCNT FETs, and a similar effect is expected to occur in MWCNTs.  相似文献   

20.
Schottky barriers formed at carbon nanotube (CNT)-metal contacts have been well known to be crucial for the performance of CNT based field effect transistors (FETs). Through first principles calculations we show that a nanowelding process can drastically reduce the Schottky barriers at CNT-metal interfaces, resulting in significantly improved conductivity of CNT-based FETs. The proposed nanowelding can be realized by either laser local heating or a heating process via a controllable pulse current. Results presented in this paper may have great implications in future design and applications of CNT-based electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号