首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chicken stomachs can be processed into collagen hydrolysate usable in cosmetic products. The aim of the study was to verify the effects of a carbopol gel formulation enriched with 1.0% (w/w) chicken hydrolysate on the properties of the skin in the periorbital area after regular application twice a day for eight weeks in volunteers ageed 50 ± 9 years. Skin hydration, transepidermal water loss (TEWL), skin elasticity and skin relief were evaluated. Overall, skin hydration increased by 11.82% and 9.45%, TEWL decreased by 25.70% and 17.80% (always reported for the right and left area). Generally, there was an increase in skin elasticity, a decrease in skin roughness, as the resonance times decreased by 85%. The average reduction of wrinkles was 35.40% on the right and 41.20% on the left. For all results, it can be seen that the longer the cosmetic gel formulation is applied, the better the results. Due to the positive effect on the quality and functionality of the skin, it is possible to apply the cosmetic gel formulation in the periorbital area. The advantage of the product with chicken collagen hydrolysate is also the biocompatibility with the skin and the biodegradability of the formulation.  相似文献   

2.
Using histochemical techniques an abnormal programme of epidermal differentiation has been well documented in psoriasis. In order to characterise further the biochemistry of this process we have cultured dermal fibroblasts and epidermal keratinocytes from involved psoriatic skin. This has facilitated metabolic radiolabelling of skin cells and analysis of protein synthesis by two-dimensional polyacrylamide gel electrophoresis. The expression of keratin and differentiation markers was identical to that of normal keratinocytes, suggesting that psoriatic epidermal differentiation is not truncated in vitro as has been postulated to be the case in vivo. Low molecular mass components (5-8.5 kDa), previously shown to be upregulated in suprabasal keratinocytes, were detected in epidermal fractions from psoriatic skin enriched for basal cells. Of special interest was a component of 26 kDa, pI 5.9, which was highly upregulated in psoriatic as compared to normal cultured keratinocytes and was not detected in fibroblasts. These findings are in accord with a qualitatively abnormal pattern of differentiation for keratinocytes in the involved psoriatic epidermis.  相似文献   

3.
4.
We have combined the calcite force field of Hwang et al. (J. Phys. Chem. B 105:4,122–4,127, 2001) with the F3C water model and a hybrid Lennard-Jones/van der Waals 3-site potential for CO2 to investigate the (10[`1]4){\left({10\overline14}\right)} and ( 10[`1]0){\left( {10\overline10}\right)} cleaving surfaces of calcite under dry and wetted conditions. The wetting fluid included both pure water and water–carbon dioxide mixture. Excess surface energies and structural features of the calcite–fluid interface were analyzed, with the simulation results for the relaxed surfaces confirming the experimentally observed morphology and supporting our conclusion that the relative stability order of calcite cleaving surfaces under investigation will remain unchanged in the presence of water–carbon dioxide mixture as well.  相似文献   

5.
The structure and hydrophilic-hydrophobic properties of functionalized single-wall carbon nanotubes are studied by the standard porosimetry method. It is shown that the functionalized nanotubes have highly hydrophilic surface; at that the summary surface area measured “by octane” decreased, as a result of the functionalizing, due to the blocking of the nanotubes’ inner channels by the functional groups located at the nanotubes’ ends. The nanotubes’ capacitive properties are studied; their charging-discharging curves appeared being highly reversible, unlike those of other carbonaceous materials. Catalytic properties of the functionalized nanotubes are studied, with particular tendency toward their using as a carrier of platinum catalysts for the methanol oxidation and oxygen electroreduction reactions. When minor amounts (5–10 μg cm−2) of platinum or platinum-ruthenium alloy are deposited onto the nanotubes’ hydrophilic surface, uniform layer of the catalyst is formed, with specific surface area up to 150–300 m2 g−1; high current of the methanol oxidation or oxygen electroreduction is observed at these catalysts. When the catalyst deposit mass increased, its specific surface area decreased, as well as the specific current of the reactions occurring thereon. When the current is related to the electrochemically active unit surface, the catalytic activity is nearly the same both for different catalyst mass deposited onto the nanotubes and the same catalyst mass at different carbonaceous carriers.  相似文献   

6.
Solar UVA exposure plays a causative role in skin photoaging and photocarcinogenesis. Here, we describe the proteomic identification of novel UVA-targets in human dermal fibroblasts following a two-dimensional-difference-gel-electrophoresis (2D-DIGE) approach. Fibroblasts were exposed to noncytotoxic doses of UVA or left untreated, and total protein extracts underwent CyDye-labeling followed by 2D-DIGE/mass-spectrometric identification of differentially expressed proteins, confirmed independently by immunodetection. The protein displaying the most pronounced UVA-induced upregulation was identified as the nucleolar protein nucleophosmin. The protein undergoing the most pronounced UVA-induced downregulation was identified as cathepsin B, a lysosomal cysteine-protease displaying loss of enzymatic activity and altered maturation after cellular UVA exposure. Extensive lysosomal accumulation of lipofuscin-like autofluorescence and osmiophilic material occurred in UVA-exposed fibroblasts as detected by confocal fluorescence microscopy and transmission electron microscopy, respectively. Array analysis indicated UVA-induced upregulation of oxidative stress response gene expression, and UVA-induced loss of cathepsin B enzymatic activity in fibroblasts was suppressed by antioxidant intervention. Pharmacological cathepsin B inhibition using CA074Me mimicked UVA-induced accumulation of lysosomal autofluorescence and deficient cathepsin B maturation. Taken together, these data support the hypothesis that cathepsin B is a crucial target of UVA-induced photo-oxidative stress causatively involved in dermal photodamage through the impairment of lysosomal removal of lipofuscin.  相似文献   

7.
Quantitative and qualitative changes in dermal collagen and elastin occur in response to chronic ultraviolet (UV) irradiation. These changes have been implicated in the genesis of the wrinkling seen in chronically irradiated, or photoaged skin. We examined the relationship between wrinkle formation and changes in dermal structural protein content and type. Skh-1 hairless mice were irradiated with suberythemal doses of UV-B three times a week for up to 20 wk. Visible wrinkling was present after 6-7 wk of irradiation. Dermal elastic fiber content was quantified by color image analysis of paraffin-embedded tissue. There was no significant difference in dermal elastic fiber content between irradiated and age-matched control mice after either 10 or 20 wk of irradiation. The effect of UV-B irradiation on total dermal collagen content, ratio of collagen type III-type I, and extent of glycosylation and crosslinking of collagen was no different in irradiated and age-matched control mice after 10 wk of irradiation. Increased epidermal thickness was evident in frozen sections after 6 wk of irradiation, and the thickness increased with continued irradiation. Dermal thickening was evident after 10 wk of irradiation. Sufficient UV-B irradiation will eventually cause changes in dermal elastin and collagen content; however, wrinkle formation precedes such changes. A causal relationship between wrinkle formation and dermal structural protein content changes in Skh-1 hairless mice could not be established in this study.  相似文献   

8.
We have conducted a series of experiments to explore the surface of the polished pyrolytic graphite ‘edge’ electrode as routinely prepared for use in protein film voltammetry. Our investigations have included nitrogen porosimetry and scanning electron microscopy. The nitrogen adsorption revealed a Brunauer–Emmett–Teller surface area ∼104 times greater than the geometric surface area of the electrode. The pore-size distribution calculated by the Horváth–Kawazoe method showed that 10–18% of the pore volume arises from pores having widths >10 nm and, thus, should be accessible to enzymes, although much of the exposed ‘wall’ surface may be inactive for enzyme binding or electron transfer: for example, it may be mainly basal plane. Scanning electron micrographs of the abraded pyrolytic graphite edge showed differing scales of surface damage caused by the abrasion and the presence of many cracks in the surface where thin platelets had been removed.This work is dedicated to Prof. Alan Bond on the occasion of his 60th birthday. Alan’s enthusiasm for the complexities of diffusion control persuaded one of us (F.A. Armstrong) to try and avoid it altogether in protein electrochemical studies.  相似文献   

9.
A method for calculating the asymmetry parameters of molecules based on Avnir’s CSM approach combined with the “dissymmetry function” method is suggested. The performance of the approach is demonstrated on various geometrical models — high-symmetry antiprisms of S10 and D5 symmetry groups, helices, and molecular objects. It is shown that the MCSM method unambiguously determines the symmetry element or estimates the degree of asymmetry for molecules from different structural classes. A. V. Bogatskii Physiocochemical Institute, Ukrainian Academy of Sciences. Odessa State University. Translated fromZhurnal Strukturnoi Khimii, Vol. 39, No. 3, pp. 547–552, May–June, 1998.  相似文献   

10.
l-Tyrosine polyphosphate (LTP), a “pseudo” poly (amino acid) polymer is characterized by a rapid degradation rate. Subsequently, formulation of a drug delivery system has been investigated by encapsulating fluorescein isothiocyanate–bovine serum albumin (FITC-BSA) within LTP microparticles. Characterization of surface morphology shows a mixture of spherical and discoid particles with a slightly rough surface morphology for all microparticle formulations. Dynamic laser light scattering (DLS) shows a decrease in particle diameters and size distribution upon FITC-BSA encapsulation. LTP microparticles are found to degrade over a period of 7 days, and complete release of FITC-BSA is observed over a period of 6 days. Cytotoxicity evaluation of LTP microparticles indicates that these microparticles do not cause severe cell death in cultured primary human dermal fibroblasts over a period of 10 days. Therefore, the LTP microparticles are promising candidates for short-term protein delivery applications.  相似文献   

11.
An amperometric biosensor for the determination of creatine was developed. The carbon rod electrode surface was coated with sarcosine oxidase (SOX) and creatine amidinohydrolase by cross-linking under glutaraldehyde vapour. The SOX from Arthrobacter sp. 1–1 N was purified and previously used for creation of a creatine biosensor. The natural SOX electron acceptor, oxygen, was replaced by an redox mediating system, which allowed amperometric detection of an analytical signal at +400-mV potential. The response time of the biosensor was less than 1 min. The biosensor showed a linear dependence of the signal vs. creatine concentration at physiological creatine concentration levels. The optimal pH in 0.1 M tris(hydroxymethyl)aminomethane (Tris)–HCl buffer was found to be at pH 8.0. The half-life of the biosensor was 8 days in 0.1 M Tris–HCl buffer (pH 8.0) at 20 °C. Principal scheme of consecutively followed catalytic reactions used to design a biosensor for the determination of creatine  相似文献   

12.

Abstract  

The density and surface tension of binary In–Sn and ternary Cu–In–Sn alloys have been measured by a sessile-drop method. Decrease of the density and of the surface tension was observed with rising temperature. With increased Sn content in the alloys, the density increased while the surface tension reduced slightly. Addition of Cu could significantly increase the density and surface tension in the Cu–In–Sn system. The surface tension of the Cu–In–Sn alloys was also calculated by means of Butler’s equation, and compared with experimental values, showing good agreement.  相似文献   

13.
Soft skin layers on elastomeric substrates are demonstrated to support mechano-responsive wrinkle patterns that do not exhibit cracking under applied strain. Soft fluoropolymer skin layers on pre-strained poly(dimethylsiloxane) slabs achieved crack-free surface wrinkling at high strain regimes not possible by using conventional stiff skin layers. A side-by-side comparison between the soft and hard skin layers after multiple cycles of stretching and releasing revealed that the soft skin layer enabled dynamic control over wrinkle topography without cracks or delamination. We systematically characterized the evolution of wrinkle wavelength, amplitude, and orientation as a function of tensile strain to resolve the crack-free structural transformation. We demonstrated that wrinkled surfaces can guide water spreading along wrinkle orientation, and hence switchable, anisotropic wetting was realized.  相似文献   

14.
Soft skin layers on elastomeric substrates are demonstrated to support mechano-responsive wrinkle patterns that do not exhibit cracking under applied strain. Soft fluoropolymer skin layers on pre-strained poly(dimethylsiloxane) slabs achieved crack-free surface wrinkling at high strain regimes not possible by using conventional stiff skin layers. A side-by-side comparison between the soft and hard skin layers after multiple cycles of stretching and releasing revealed that the soft skin layer enabled dynamic control over wrinkle topography without cracks or delamination. We systematically characterized the evolution of wrinkle wavelength, amplitude, and orientation as a function of tensile strain to resolve the crack-free structural transformation. We demonstrated that wrinkled surfaces can guide water spreading along wrinkle orientation, and hence switchable, anisotropic wetting was realized.  相似文献   

15.
Thermal properties of some shedded snake skins in comparison with human skins are represented by thermogravimetry (TG), derivative thermogravimetry (DTG), and differential thermal analysis (DTA) to predict process condition as dermal pathway for administration of drugs or it be used as model membranes for permeation studies. Thermal behavior by TG/DTG and DTA curves for four kinds of shedded snake skins as Boelens Python (BP), Eastern Indigo Snake (EIS), Emerald Tree Boa (ETB), and Cascavel (CBR) were similar in relation to their decomposition temperatures at 100 °C and 230–400 °C of its constituents, however, their properties were different in the residue content (inorganic or carbonaceous substances). Similar thermal properties were also exhibited by human skins’ samples, however, they presented different residue and constituents’ content.  相似文献   

16.
Alternating current (AC) impedance measurements of mild steel/sulfuric acid interface in the absence and in the presence of various concentrations of cystine (Cys–Cys) have been carried out in the 100 kHz–10 mHz frequency range. The results revealed that Cys–Cys is a good and effective inhibitor for mild steel corrosion in 0.5 M H2SO4 and its percent inhibition efficiency changes with its concentration. Changes in impedance parameters indicated the adsorption of Cys–Cys on the mild steel surface, which was verified by scanning electron microscope (SEM) and atomic force microscope (AFM) photographs. Adsorption of Cys–Cys on mild steel surface was found to obey the Langmuir adsorption isotherm with a standard free energy of adsorption of −33.2 kJ/mol. Energy gaps for the interactions between mild steel surface and Cys–Cys molecule were found to be close to each other showing that Cys–Cys owns capacity to behave as both electron donor and electron acceptor.  相似文献   

17.
Micelle-templated mesoporous and organic–inorganic hybrid mesoporous materials are important in many fields of material research, especially for hosting catalysts in confined space. Among this class, the recent discovery of periodic mesoporous organosilicas (PMOs) represent an exciting new group of organic–inorganic nanocomposites targeted for a broad range of applications ranging from catalysis to microelectronics. Compared to the earlier generation of organic–inorganic hybrid mesoporous samples, obtained by the cocondensation reaction or by the grafting reaction, PMOs represent the right combination of organic and inorganic groups in the frame wall positions. This article reviews the current state of art in organic–inorganic hybrid mesoporous material research with special emphasis over periodic mesoporous organosilica materials having various redox centers (Ti, V, Cr) suitable for oxidation reactions as well as acidic sites (Al, –SO3H) for the organic transformation of bulky molecules.  相似文献   

18.
Ultrasound increases the reaction rate and alters the selectivity in product formation in the autoxidation of methylbenzenes. The effects are dependent on the nature and properties of the substrate, as well as on the temperature and pressure in the reaction system. L’vov Polytechnic State University, 12 S. Bandera ul., L’vov-13 290046, Ukraine. Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 34, No. 2, pp. 126–129, March–April, 1998.  相似文献   

19.
A quantum-chemical investigation into the location and form of solitons in the cations of unsymmetrical polymethine systems was undertaken. It was shown that the introduction of one terminal group (electron-donating or electron-accepting) with intrinsic level outside the energy gap of the main chromophore leads to displacement of the charge and geometric waves without substantial distortion of their form; the introduction of an amino group with a high level for the unshared electron pair is accompanied by displacement of the solitons to the end of the conjugation chain, so that half of the soliton wave projects onto the molecule. In unsymmetrical polymethine cations with two nitrous groups the geometric soliton is closer to the less basic residue; replacement of one terminal residue by a methoxy group moves the position of the soliton to the end of the chromophore. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 44, No. 4, pp. 221–227, July–August, 2008.  相似文献   

20.
Anisotropic wrinkling which utilizes the anisotropic nature of liquid crystalline polymer (LCP) is demonstrated as a means of physical self-assembly to produce periodic microstructures. Through the plasma treatment on the molecularly aligned LCP film surface, one-dimensionally ordered wrinkle pattern was spontaneously formed on glass substrates without employing external thin-film deposition or prestrain control of the system. Experimental results indicate that the directionality of the wrinkle pattern can be tailored by the structural ordering of LCP molecules in the bilayer system of a hard skin layer on a soft substrate. Studies on process variables, such as the plasma treatment time and the film thickness, were conducted to figure out the effect on the wrinkling morphology. Due to its spatial periodicity over a large area and undemanding requirement of the process, this approach can be a candidate for the microfabrication in various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号